382 research outputs found

    341 RAPID 3D-T1 MAPPING OF CARTILAGE WITH PARALLEL IMAGING AT 3.0T

    Get PDF

    The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset

    Full text link
    Purpose: To organize a knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of automatic segmentation methods relevant for monitoring osteoarthritis progression. Methods: A dataset partition consisting of 3D knee MRI from 88 subjects at two timepoints with ground-truth articular (femoral, tibial, patellar) cartilage and meniscus segmentations was standardized. Challenge submissions and a majority-vote ensemble were evaluated using Dice score, average symmetric surface distance, volumetric overlap error, and coefficient of variation on a hold-out test set. Similarities in network segmentations were evaluated using pairwise Dice correlations. Articular cartilage thickness was computed per-scan and longitudinally. Correlation between thickness error and segmentation metrics was measured using Pearson's coefficient. Two empirical upper bounds for ensemble performance were computed using combinations of model outputs that consolidated true positives and true negatives. Results: Six teams (T1-T6) submitted entries for the challenge. No significant differences were observed across all segmentation metrics for all tissues (p=1.0) among the four top-performing networks (T2, T3, T4, T6). Dice correlations between network pairs were high (>0.85). Per-scan thickness errors were negligible among T1-T4 (p=0.99) and longitudinal changes showed minimal bias (<0.03mm). Low correlations (<0.41) were observed between segmentation metrics and thickness error. The majority-vote ensemble was comparable to top performing networks (p=1.0). Empirical upper bound performances were similar for both combinations (p=1.0). Conclusion: Diverse networks learned to segment the knee similarly where high segmentation accuracy did not correlate to cartilage thickness accuracy. Voting ensembles did not outperform individual networks but may help regularize individual models.Comment: Submitted to Radiology: Artificial Intelligence; Fixed typo

    Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Get PDF
    PURPOSE: To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. MATERIAL AND METHODS: Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. RESULTS: No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p &lt; 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. CONCLUSION: T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise

    Characterization of Human Osteoarthritic Cartilage Using Optical and Magnetic Resonance Imaging

    Get PDF
    Purpose: Osteoarthritis (OA) is a degenerative disease starting with key molecular events that ultimately lead to the breakdown of the cartilage. The purpose of this study is to use two imaging methods that are sensitive to molecular and macromolecular changes in OA to better characterize the disease process in human osteoarthritic cartilage. Procedures: Human femoral condyles were collected from patients diagnosed with severe OA during total knee replacement surgeries. T1ρ and T2 magnetic resonance measurements were obtained using a 3-Tesla whole body scanner to assess macromolecular changes in the damaged cartilage matrix. Optical imaging was performed on specimens treated with MMPSense 680 to assess the matrix metalloproteinase (MMP) activity. A linear regression model was used to assess the correlation of MMP optical data with T 1ρ magnetic resonance (MR) measurements. Slices from a representative specimen were removed from regions with high and low optical signals for subsequent histological analysis. Results: All specimens exhibit high T1ρ and T2 measurements in the range of 48–75 ms and 36– 69 ms, respectively. They also show intense photon signals (0.376 to 7.89×10 −4 cm 2) from th

    Skin sodium measured with (23)Na MRI at 7.0 T

    Get PDF
    Skin sodium (Na(+)) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23)Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution 23 Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with 23 Na MRI using a high in-plane resolution of 0.9 x 0.9 mm2 . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23)Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with (23)Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na(+) storage function of skin

    Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Get PDF
    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p &lt; 0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p &lt; 0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p &lt; 0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p &lt; 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use

    The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis

    Get PDF
    The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades
    corecore