423 research outputs found
Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: a comparison of linear, logistic, and CART models
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60–80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables
Towards harmonization of microscopy methods for malaria clinical research studies
Microscopy performed on stained films of peripheral blood for detection, identification and quantification of malaria parasites is an essential reference standard for clinical trials of drugs, vaccines and diagnostic tests for malaria. The value of data from such research is greatly enhanced if this reference standard is consistent across time and geography. Adherence to common standards and practices is a prerequisite to achieve this. The rationale for proposed research standards and procedures for the preparation, staining and microscopic examination of blood films for malaria parasites is presented here with the aim of improving the consistency and reliability of malaria microscopy performed in such studies. These standards constitute the core of a quality management system for clinical research studies employing microscopy as a reference standard. They can be used as the basis for the design of training and proficiency testing programmes as well as for procedures and quality assurance of malaria microscopy in clinical research.Publisher PDFPeer reviewe
Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases
Purpose: Corrected T1 (cT1) value is a novel MRI-based quantitative metric for assessing a composite of liver inflammation and fibrosis. It has been shown to distinguish between non-alcoholic fatty liver disease (NAFL) and non-alcoholic steatohepatitis. However, these studies were conducted in patients at high risk for liver disease. This study establishes the normal reference range of cT1 values for a large UK population, and assesses interactions of age and gender.
Methods: MR data were acquired on a 1.5T system as part of the UK Biobank Imaging Enhancement study. Measures for Proton Density Fat Fraction and cT1 were calculated from the MRI data using a multi-parametric MRI software application. Data that did not meet quality criteria were excluded from further analysis. Inter and intra-reader variability was estimated in a set of data. A cohort at low risk for NAFL was identified by excluding individuals with BMI ≥ 25kg/m2 and PDFF ≥ 5%. Of the 2816 participants with data of suitable quality, 1037 (37%) were classified as at low risk.
Results: The cT1 values in the low risk population ranged from 573 to 852 ms with a median of 666 ms and interquartile range from 643-694 ms. Iron correction of T1 was necessary in 36.5% of this reference population. Age and gender had minimal effect on cT1 values.
Conclusion: The majority of cT1 values are tightly clustered in a population at low risk for NAFL; suggesting it has the potential to serve as a new quantitative imaging biomarker for studies of liver health and disease
Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study
<p>Abstract</p> <p>Background</p> <p>In patients with ischemic heart disease, accurate assessment of the extent of myocardial perfusion deficit may be important in predicting prognosis of clinical cardiac outcomes. The aim of this study was to compare the ability of three dimensional (3D) and of two dimensional (2D) multi-slice myocardial perfusion imaging (MPI) using cardiovascular magnetic resonance (CMR) in determining the size of defects, and to demonstrate the feasibility of 3D MPI in healthy volunteers at 3 Tesla.</p> <p>Methods</p> <p>A heart phantom was used to compare the accuracy of 3D and 2D multi-slice MPI in estimating the volume fraction of seven rubber insets which simulated transmural myocardial perfusion defects. Three sets of cross-sectional planes were acquired for 2D multi-slice imaging, where each set was shifted along the partition encoding direction by ± 10 mm. 3D first-pass contrast-enhanced (0.1 mmol/kg Gd-DTPA) MPI was performed in three volunteers with sensitivity encoding for six-fold acceleration. The upslope of the myocardial time-intensity-curve and peak SNR/CNR values were calculated.</p> <p>Results</p> <p>Mean/standard deviation of errors in estimating the volume fraction across the seven defects were -0.44/1.49%, 2.23/2.97%, and 2.59/3.18% in 3D, 2D 4-slice, and 2D 3-slice imaging, respectively. 3D MPI performed in healthy volunteers produced excellent quality images with whole left ventricular (LV) coverage. Peak SNR/CNR was 57.6 ± 22.0/37.5 ± 19.7 over all segments in the first eight slices.</p> <p>Conclusion</p> <p>3D performed better than 2D multi-slice MPI in estimating the size of perfusion defects in phantoms. Highly accelerated 3D MPI at 3T was feasible in volunteers, allowing whole LV coverage with excellent image quality and high SNR/CNR.</p
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Beauty photoproduction measured using decays into muons in dijet events in ep collisions at =318 GeV
The photoproduction of beauty quarks in events with two jets and a muon has
been measured with the ZEUS detector at HERA using an integrated luminosity of
110 pb. The fraction of jets containing b quarks was extracted from the
transverse momentum distribution of the muon relative to the closest jet.
Differential cross sections for beauty production as a function of the
transverse momentum and pseudorapidity of the muon, of the associated jet and
of , the fraction of the photon's momentum participating in
the hard process, are compared with MC models and QCD predictions made at
next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September
200
Search for a narrow charmed baryonic state decaying to D^*+/- p^-/+ in ep collisions at HERA
A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum
with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The
decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s
-> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were
used to identify D^*+/- mesons. No resonance structure was observed in the
D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons.
The results are not compatible with a report of the H1 Collaboration of a
charmed pentaquark, Theta^0_c.Comment: 22 pages, 7 figures, 1 table; minor text revisions; 2 references
adde
CD36 selection of 3D7 Plasmodium falciparum associated with severe childhood malaria results in reduced VAR4 expression
<p>Abstract</p> <p>Background</p> <p>A subset of the <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1<sub>SM</sub>) is involved in the cytoadherence of <it>P. falciparum</it>-infected red blood cells (iRBC) contributing to the pathogenesis of severe disease among young children in malaria endemic areas. The PfEMP1<sub>SM </sub>are encoded by group A <it>var </it>genes that are composed of a more constrained range of amino acid sequences than groups B and C <it>var </it>genes encoding PfEMP1<sub>UM </sub>associated with uncomplicated malaria. Also, unlike <it>var </it>genes from groups B and C, those from group A do not have sequences consistent with CD36 binding – a major cytoadhesion phenotype of <it>P. falciparum </it>isolates.</p> <p>Methods</p> <p>A 3D7 PfEMP1<sub>SM </sub>sub-line (3D7<sub>SM</sub>) expressing VAR4 (PFD1235w/MAL8P1.207) was selected for binding to CD36. The protein expression of this parasite line was monitored by surface staining of iRBC using VAR4-specific antibodies. The serological phenotype of the 3D7<sub>SM </sub>parasites was determined by flow cytometry using malaria semi-immune and immune plasma and transcription of the 59 <it>var </it>genes in 3D7 were analysed by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) using <it>var</it>-specific primers.</p> <p>Results</p> <p>A selection-induced increased adhesion of 3D7<sub>SM </sub>iRBC to CD36 resulted in a reduced <it>var4 </it>transcription and VAR4 surface expression.</p> <p>Conclusion</p> <p>VAR4 is not involved in CD36 adhesion. The current findings are consistent with the notion that CD36 adhesion is not associated with particular virulent parasite phenotypes, such as those believed to be exhibited by VAR4 expressing parasites.</p
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties
The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
- …