10 research outputs found

    Luteolin Induces Cytotoxicity in Mix Cellularity Classical Hodgkin\u27s Lymphoma via Caspase Activated-cell Death

    Full text link
    Background/aim: We investigated the effects of luteolin (LUT) on classical Hodgkin\u27s lymphoma (cHL), since such studies in malignant lymphomas are lacking. Materials and methods: Effect of LUT on cell growth was assessed with water-soluble tetrazolium 1 (WST-1) cell proliferation assay and automated hemocytometry on trypan blue-exclusion assay. Cell death was investigated with acridine orange/ethidium bromide live-dead assay, propidium iodide (PI) flow cytometry, and Annexin-V-PI microscopy. Caspase activation was studied using CellEvent Caspase-3/7 Green detection reagent. High resolution immunofluorescence microscopy was used to detect cleaved-PARP-1. Results: LUT induced a dose-dependent decrease in the growth of KMH2 and L428 cells, cellular models of mix-cellularity (MC) and nodular sclerosis (NS) cHL, respectively. However, LUT induced cell death only in KMH2, at a higher concentration, and this was associated with caspase activation and cleaved PARP-1. Conclusion: LUT induces cytotoxicity in the MC-cHL cellular model KMH2 via caspase activation

    IL-24 Promotes Apoptosis through cAMP-Dependent PKA Pathways in Human Breast Cancer Cells

    Full text link
    Interleukin 24 (IL-24) is a tumor-suppressing protein, which inhibits angiogenesis and induces cancer cell-specific apoptosis. We have shown that IL-24 regulates apoptosis through phosphorylated eukaryotic initiation factor 2 alpha (eIF2α) during endoplasmic reticulum (ER) stress in cancer. Although multiple stresses converge on eIF2α phosphorylation, the cellular outcome is not always the same. In particular, ER stress-induced apoptosis is primarily regulated through the extent of eIF2α phosphorylation and activating transcription factor 4 (ATF4) action. Our studies show for the first time that cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation is required for IL-24-induced cell death in a variety of breast cancer cell lines and this event increases ATF4 activity. We demonstrate an undocumented role for PKA in regulating IL-24-induced cell death, whereby PKA stimulates phosphorylation of p38 mitogen-activated protein kinase and upregulates extrinsic apoptotic factors of the Fas/FasL signaling pathway and death receptor 4 expression. We also demonstrate that phosphorylation and nuclear import of tumor suppressor TP53 occurs downstream of IL-24-mediated PKA activation. These discoveries provide the first mechanistic insights into the function of PKA as a key regulator of the extrinsic pathway, ER stress, and TP53 activation triggered by IL-24

    Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold

    Get PDF
    Retinal progenitor cells (RPCs) can be combined with nanostructured polymer scaffolds to generate composite grafts in culture. One strategy for repair of diseased retinal tissue involves implantation of composite grafts of this type in the subretinal space. In the present study, mouse retinal progenitor cells (RPCs) were cultured on laminin-coated novel nanowire poly(e-caprolactone)(PCL) scaffolds, and the survival, differentiation, and migration of these cells into the retina of C57bl/6 and rhodospsin −/− mouse retinal explants and transplant recipients were analyzed. RPCs were cultured on smooth PCL and both short (2.5 μm) and long (27 μm) nanowire PCL scaffolds. Scaffolds with adherent mRPCs were then either co-cultured with, or transplanted to, wild-type and rhodopsin −/− mouse retina. Robust RPC proliferation on each type of PCL scaffold was observed. Immunohistochemistry revealed that RPCs cultured on nanowire scaffolds increased expression of mature bipolar and photoreceptor markers. Reverse transcription polymerase chain reaction revealed down-regulation of several early progenitor markers. PCL-delivered RPCs migrated into the retina of both wild-type and rhodopsin knockout mice. The results provide evidence that RPCs proliferate and express mature retinal proteins in response to interactions with nanowire scaffolds. These composite grafts allow for the migration and differentiation of new cells into normal and degenerated retina

    Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice

    Get PDF
    This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs), could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease

    IL-24 Promotes Apoptosis through cAMP-Dependent PKA Pathways in Human Breast Cancer Cells

    No full text
    Interleukin 24 (IL-24) is a tumor-suppressing protein, which inhibits angiogenesis and induces cancer cell-specific apoptosis. We have shown that IL-24 regulates apoptosis through phosphorylated eukaryotic initiation factor 2 alpha (eIF2α) during endoplasmic reticulum (ER) stress in cancer. Although multiple stresses converge on eIF2α phosphorylation, the cellular outcome is not always the same. In particular, ER stress-induced apoptosis is primarily regulated through the extent of eIF2α phosphorylation and activating transcription factor 4 (ATF4) action. Our studies show for the first time that cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation is required for IL-24-induced cell death in a variety of breast cancer cell lines and this event increases ATF4 activity. We demonstrate an undocumented role for PKA in regulating IL-24-induced cell death, whereby PKA stimulates phosphorylation of p38 mitogen-activated protein kinase and upregulates extrinsic apoptotic factors of the Fas/FasL signaling pathway and death receptor 4 expression. We also demonstrate that phosphorylation and nuclear import of tumor suppressor TP53 occurs downstream of IL-24-mediated PKA activation. These discoveries provide the first mechanistic insights into the function of PKA as a key regulator of the extrinsic pathway, ER stress, and TP53 activation triggered by IL-24

    Müller Cell Zinc Transporter-3 Labeling Suggests a Role in Outer Retina Zinc Homeostasis

    No full text
    Labeling for zinc transporter protein-3 (ZnT-3), which can be found localized to glutamatergic vesicles elsewhere in the nervous system, has revealed an unexpectedly high concentration of this transporter protein in the outer limiting membrane region of the murine retina, a region that contains the mitochondria-rich portion of photoreceptor inner segments and is not involved with vesicle release. Having suggested the possibility that Müller cell apical villi forming the outer limiting membrane may be associated with the labeling observed, we used immunohistochemical techniques to look for ZnT-3 labeling of Müller cells isolated from rat and mouse retinas. With DAB labeling, rat Müller cell apical villi, soma, and endfeet exhibited ZnT-3 reactivity. FITC label and confocal analysis revealed that ZnT-3 protein appeared throughout the length of mouse Müller cells. We conclude from these observations that the dense labeling for ZnT-3 in the photoreceptor inner segment region of murine retinal slices is due to labeling of ZnT-3 protein associated with Müller cell apical villi. Based on these findings we suggest that Müller cells utilize ZnT-3 to regulate retinal zinc homeostasis and that this role is important to mitochondrial function in the photoreceptor inner segments

    Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins

    Get PDF
    A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic growth factors and morphogen proteins. mRPC EVs were shown to transfer GFP mRNA between cell populations. Finally, analysis of EV mediated functional cargo delivery, using the Cre-loxP recombination system, revealed transfer and uptake of Cre+ EVs, which were then internalized by target mRPCs activating responder loxP GFP expression. In summary, the data supports a paradigm of EV genetic material encapsulation and transfer within RPC populations. RPC EV transfer may influence recipient RPC transcriptional and post-transcriptional regulation, representing a novel mechanism of differentiation and fate determination during retinal development
    corecore