329 research outputs found

    Diffusion of Art: An Investigation of the Evolution of Modern Indian Art

    Get PDF

    Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis

    Get PDF
    [EN] BackgroundThe importance of Indian germplasm as origin and primary center of diversity of cultivated melon is widely accepted. Genetic diversity of several collections from Indian has been studied previously, although an integrated analysis of these collections in a global diversity perspective has not been possible. In this study, a sample of Indian collections together with a selection of world-wide cultivars to analyze the genetic diversity structure based on Genotype by Sequence data.ResultsA set of 6158 informative Single Nucleotide Polymorphism (SNP) in 175 melon accessions was generated. Melon germplasm could be classified into six major groups, in concordance with horticultural groups. Indian group was in the center of the diversity plot, with the highest genetic diversity. No strict genetic differentiation between wild and cultivated accessions was appreciated in this group. Genomic regions likely involved in the process of diversification were also found. Interestingly, some SNPs differentiating inodorus and cantalupensis groups are linked to Quantitiative Trait Loci involved in ripening behavior (a major characteristic that differentiate those groups). Linkage disequilibrium was found to be low (17kb), with more rapid decay in euchromatic (8kb) than heterochromatic (30kb) regions, demonstrating that recombination events do occur within heterochromatn, although at lower frequency than in euchromatin. Concomitantly, haplotype blocks were relatively small (59kb). Some of those haplotype blocks were found fixed in different melon groups, being therefore candidate regions that are involved in the diversification of melon cultivars.ConclusionsThe results support the hypothesis that India is the primary center of diversity of melon, Occidental and Far-East cultivars have been developed by divergent selection. Indian germplasm is genetically distinct from African germplasm, supporting independent domestication events. The current set of traditional Indian accessions may be considered as a population rather than a standard collection of fixed landraces with high intercrossing between cultivated and wild melons.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO)-FEDER grant AGL2015-64625-C2-R to AJM (project conception, experiments, data acquisition and analysis, manuscript writing, publication costs), AGL2017-85563-C2-1-R and the PROMETEO/2017/078 grant funded by Generalitat Valenciana (Conselleria d'Educacio, Investigacio, Cultura i Esport) to BP (project conception, provide samples and manuscript drafting). AD was supported by a Jae-Doc contract from CSIC (experiments and manuscript drafting).Gonzalo, M.; Díaz Bermúdez, A.; Dhillon, NPS.; Reddy, UK.; Picó Sirvent, MB.; Monforte Gilabert, AJ. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics. 20:1-13. https://doi.org/10.1186/s12864-019-5784-0S11320Munger HM, Robinson RW. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep. 1991;14:43–4.Pitrat M, Hanelt P, Hammer K. Some comments on infraspecific classification of cultivars of melon. Proc Cucurbitaceae. 2000;2000(510):29–36.Pitrat M. Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, editors. Genetics and genomics of the Cucurbitaceae. New York: J Garcia-Mas Springer; 2017. p. 25–60.Stepansky A, Kovalski I, Perl-Treves R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol. 1999;217(3–4):313–32.Monforte AJ, Garcia-Mas J, Arus P, Minch E. Genetic variability in melon based on microsatellite variation. Plant Breed. 2003;122(2):153–7.Esteras C, Formisano G, Roig C, Diaz A, Blanca J, Garcia-Mas J, Gomez-Guillamon ML, Lopez-Sese AI, Lazaro A, Monforte AJ, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126(5):1285–303.Sebastian P, Schaefer H, Telford IRH, Renner SS. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107(32):14269–73.Newton C. Growing, gathering and offering: predynastic plant economy at Adaïma (upper Egypt). In: R. Cappers Groningen Institute of Archaeology, editor. Fields of change: progress in African archaeobotany; 2007. p. 139–55.Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veg Hist Archaeobotany. 2016;25(4):405–14.Sabato D, Esteras C, Oscar G, Peña-Chocarro L, Leida C, Ucchesu M, Usai A, Bacchetta G, Pico B. Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeol. Anthropol. Sci. 2017;11(3):789–810.Serres-Giardi L, Dogimont C. How microsatellite diversity helps to understand the domestication history of melon. In: Cucurbitaceae 2012: proceedings of the Xth Eucarpia meeting on genetics and breeding of Cucurbitaceae; 2012. p. 254–63.Endl J, Achigan-Dako EG, Pandey AK, Monforte AJ, Pico B, Schaefer H. Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. Am J Bot. 2018;105(10):1662–71.Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP. Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol. 2007;54(6):1267–83.Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja K. Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour. 2009;7(3):291–300.Fergany M, Kaur B, Monforte AJ, Pitrat M, Rys C, Lecoq H, Dhillon NPS, Dhaliwal SS. Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol. 2011;58(2):225–43.Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS. Wild melon diversity in India (Punjab state). Genet Resour Crop Evol. 2012;59(5):755–67.Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510.Nimmakayala P, Tomason YR, Abburi VL, Alvarado A, Saminathan T, Vajja VG, Salazar G, Panicker GK, Levi A, Wechter WP, et al. Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci. 2016;7:1437.Gur A, Tzuri G, Meir A, Sa'ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep. 2017;7:9770.Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics. 2017;18:59.Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó M, Garcia-Mas J. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology. 2009;9(1):90.Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Pico B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–U1149.Wang Y-L, Gao L-Y, Yang S-Y, Xu Y-B, Zhu H-Y, Yang L-M, Li Q, Hu J-B, Sun S-R, Ma C-S. Molecular diversity and population structure of oriental thin-skinned melons, Cucumis melo subsp agrestis, revealed by a set of core SSR markers. Sci Hortic. 2018;229:59–64.Zhang Y, Fan X, Aierken Y, Ma X, Yi H, Wu M. Genetic diversity of melon landraces (Cucumis melo L.) in the Xinjiang Uygur autonomous region on the basis of simple sequence repeat markers. Genet Resour Crop Evol. 2017;64(5):1023–35.Omari S, Kamenir Y, Benichou JIC, Pariente S, Sela H, Perl-Treves R. Landraces of snake melon, an ancient middle eastern crop, reveal extensive morphological and DNA diversity for potential genetic improvement. BMC Genet. 2018;19:34.Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31(4):829–41.Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126(6):1531–44.Rios P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Pico B, et al. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J. 2017;91(4):671–83.Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116(4):589–602.Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015;16:4.Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. 2011;122(3):523–31.Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet. 2017;130(1):123–35.Ruggieri V, Francese G, Sacco A, D'Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014;14:337.Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Theor Appl Genet. 2017;130(5):875–89.Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK, et al. Melon landraces of India: contributions and importance. Plant Breeding Rev. 2012;35:85–150.Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7.Yoo J, Lee Y, Kim Y, Rha SY, Kim Y. SNP analyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinf. 2008;9:290.Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma. 2005;1:47–50.Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population-structure. Evolution. 1984;38(6):1358–70.Peltier J. LOESS utility for excel. Peltier Tech Blog. http://peltiertech.com/WordPress/loess-smoothing-in-excel . 2009

    Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    Get PDF
    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima’s D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima’s D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 genome-wide SNPs significantly associated. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future genome-wide association study of economically important traits in C. baccatum peppers

    Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, <it>Peronosclerospora sorghi</it>. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level.</p> <p>Results</p> <p>Among the 55 primers pairs designed from clones from pathotype 3 of <it>P. sorghi</it>, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from <it>P. sorghi</it>, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (<it>P. maydis & P. philippinensis</it>), sugar cane (<it>P. sacchari</it>), pearl millet (<it>Sclerospora graminicola</it>) and rose (<it>Peronospora sparsa</it>) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to <it>P. philippinensis </it>(one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 <it>Peronosclerospora, Peronospora and Sclerospora </it>spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of <it>Peronosclerospora sorghi </it>in cluster I, five isolates of <it>P. maydis </it>and three isolates of <it>P. sacchari </it>in cluster II and five isolates of <it>Sclerospora graminicola </it>in cluster III).</p> <p>Conclusion</p> <p>To our knowledge, this is the first attempt to extensively develop SSR markers from <it>Peronosclerospora </it>genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.</p

    Characterization of the small RNA component of leaves and fruits from four different cucurbit species

    Get PDF
    Background: MicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits.Results: We generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted.Conclusion: High-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable variation within four cucurbit species with regards to expression of individual miRNAs.Peer reviewedBiochemistry and Molecular Biolog

    QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato

    Get PDF
    Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato

    Transcriptome profiling, physiological, and biochemical analyses provide new insights towards drought stress response in sugar maple (Acer saccharum Marshall) saplings

    Get PDF
    Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress

    Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map

    Get PDF
    Ajuts: Funding support is provided by Gus R. Douglass Institute (Evans Allen Project to Nimmakayala) and USDA-NIFA (2010-02247 and 2012-02511).Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19-0.53 and between inodorus and agrestis accessions was in a range of 0.21-0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops

    Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops

    Full text link
    [EN] The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a `SyntenyViewer¿ to view genome synteny between different cucurbit species and an `RNA-Seq¿ module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.USDA National Institute of Food and Agriculture Specialty Crop Research Initiative [2015-51181-24285]; US-Israel Binational Agricultural Research and Development Fund [IS-3333-02, IS-3877-06CR and IS-4223-09C]; USDA Agricultural Research Service, and by SNC Laboratoire ASL, de Ruiter Seeds B.V., Enza Zaden B.V., Gautier Semences S.A., Nunhems B.V., Rijk Zwaan B.V., Sakata Seed Inc, Semillas Fito S.A., Seminis Vegetable Seeds Inc, Syngenta Seeds B.V., Takii and Company Ltd, Vilmorin and Cie S.A. and Zeraim Gedera Ltd, all of them as part of the support to the International Cucurbit Genomics Initiative (ICuGI). Funding for open access charge: USDA National Institute of Food and Agriculture.Zheng, Y.; Wu, S.; Bai, Y.; Sun, H.; Jiao, C.; Guo, S.; Zhao, K.... (2018). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research. 47(D1):D1128-D1136. https://doi.org/10.1093/nar/gky944SD1128D113647D
    • …
    corecore