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Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single

nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and

Capsicum baccatum was used to characterize population structure and species

domestication of these two important incompatible cultivated pepper species.

Estimated mean nucleotide diversity (π) and Tajima’s D across various chromosomes

revealed biased distribution toward negative values on all chromosomes (except for

chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during

domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive

π and Tajima’s D on all chromosomes except chromosome 8, which may be because of

domestication at multiple sites contributing to wider genetic diversity. For C. baccatum,

13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the

SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong

population structure. The fixation index (FST ) between domesticated C. annuum and C.

baccatumwas 0.78, which indicates genome-wide divergence. We conducted extensive

linkage disequilibrium (LD) analysis ofC. baccatum var. pendulum cultivars on all adjacent

SNP pairs within a chromosome to identify regions of high and low LD interspersed with

a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes

containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study

(GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum

types, revealed 36 significantly associated genome-wide SNPs. Population structure,

identity by state (IBS) and LD patterns across the genome will be of potential use for

future GWAS of economically important traits in C. baccatum peppers.

Keywords: population structure, linkage disequilibrium, haplotyping, genotyping by sequencing, genome-wide

association mapping, peduncle length
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INTRODUCTION

Chile peppers (Capsicum spp.) are represented by at least 32
species, of which Capsicum annuum, Capsicum baccatum L. var.
pendulum (Willd.) Eshbaugh, Capsicum chinense Jacq., Capsicum
frutescens L., and Capsicum pubescens Ruiz & Pavon represent
domesticated taxa (Heiser and Smith, 1953; Eshbaugh, 1980;
Pickersgill, 1991; Bosland and Votava, 1999; Chiou and Hastorf,
2014). The eastern slopes of highland Bolivia are considered the
origin of the Capsicum genus, which spread through the pre-
Holocene Americas via dispersal by birds or through river flows.
C. baccatum, with yellow spotted white flowers, is thought to
have domesticated in lowland Bolivia or coastal Peru, whereas
entirely white-flowered C. annuum was domesticated in Mexico
(Eshbaugh, 1980; Andrews, 1984; Pickersgill, 1997; Aguilar-
Meléndez et al., 2009b; Chiou and Hastorf, 2014). Within
the C. baccatum complex, C. baccatum var. baccatum and C.
baccatum var. pendulum represent the wild and domesticated
forms of the species, respectively. C. baccatum var. pendulum
extends northwards to Ecuador and southern Colombia and
eastwards to south-eastern Brazil (Pickersgill, 1971).

Pepper germplasm is a valuable resource for investigating
the still-unresolved question of whether similar domestication
related changes occurred independently to result in parallel or
convergent evolution in the domestication syndrome (Pickersgill,
2007). Because C. annuum and C. baccatum are sexually
incompatible, the question cannot be resolved by crossing these
genetically isolated domesticated peppers. However, genomic
tools offer a plethora of opportunities to compare domestication
footprints and determine whether complementary or different
loci are involved (Pickersgill, 2007). C. baccatum var. pendulum
is known for great variability in fruit quality traits, yield,
pathogen resistance, and bioactive compounds (Yoon et al., 2006;
Rodríguez-Burruezo et al., 2009; Do Rêgo et al., 2009; Eggink
et al., 2014). Conventional plant breeding programs require
costly investments in time, labor and land to develop improved
cultivars; the application of genomic tools combined with next-
generation sequencing could accelerate the genetic improvement
of peppers. The use of C. baccatum and C. annuum species
in interspecific breeding programs has been limited because of
post-fertilization barriers.

Several studies mainly explored genetic distances and
phylogenetic analysis in C. annuum (Lefebvre et al., 1993; Prince
et al., 1995; Paran et al., 1998; Livingstone et al., 1999; Rodriguez
et al., 1999; Patricia Toquica et al., 2003; Kim and Kim, 2005;
Lefebvre, 2005; Portis et al., 2007; Aguilar-Meléndez et al., 2009a;
Mimura et al., 2012; Hill et al., 2013; Nicolaï et al., 2013;
González-Pérez et al., 2014). We have only a few reports of the
genetic diversity and population structure of C. baccatum var.
pendulum (Albrecht et al., 2011, 2012; Ibiza et al., 2012).

Genotyping by sequencing (GBS) is a reduced representation
method, which utilizes next-generation sequencing to develop
genome-wide single nucleotide polymorphisms (SNPs). SNPs
generated by GBS have been successfully deployed for genetic
diversity analysis and Genome-wide association studies (GWAS)
in several crops (Poland and Rife, 2012; Narum et al., 2013;
Liu et al., 2014; Nimmakayala et al., 2014, 2016; Guajardo

et al., 2015; Otto et al., 2016). Increased marker density across
the chromosomes facilitates to estimate genome-wide non-
random association of allelic states across the chromosomes,
which is known as Linkage disequilibrium (LD; Mackay and
Powell, 2007; Reddy et al., 2014; Baird, 2015; Wang et al.,
2015; Zanke et al., 2015). GWAS models are to scan genome-
wide LD blocks to identify causal locus for trait of the interest,
while involving population structure and identity by state (IBS)
matrices as the cofactors to reduce spurious associations due to
confounding effects of population stratification and polygenic
background (Rafalski, 2010; Stich and Melchinger, 2010; Newell
et al., 2011). The availability of genome-wide (SNPs) affords
new opportunities in the current study to better resolve C.
baccatum population structure, LD and diversity and dissect
the population demographic history across the genome by
comparison with another domesticated species, C. annuum. In
addition, we utilized population structure analyses for a genome-
wide association study (GWAS) of peduncle length, an important
domestication trait.

MATERIALS AND METHODS

Germplasm
A representative sample of 377 pepper accessions (283 C.
baccatum and 94 diverse C. annuum accessions) collected from
32 countries across the world were obtained from the USDA-
ARS, Germplasm Resource Information Network, Plant Genetic
Resources Conservation Unit, Griffin, GA and World Vegetable
Center (AVRDC, Shanhua, Taiwan) (Table S1). The C. annuum
collection was comprised of 90 domesticated cultivars and 4
wild accessions. The C. baccatum collection had 218 lines of C.
baccatum var. pendulum and 17 wild accessions (C. baccatum var.
baccatum). Peduncle length (cm) was measured for 5 plants each
of 217 accessions belonging to C. baccatum var. pendulum grown
in a greenhouse in three replications.

Genotyping by Sequencing (GBS)
Genomic DNA was isolated from the seedlings using the DNeasy
plant mini kit (QIAGEN, Germany), and GBS was as described
(Elshire et al., 2011). DNA was treated with the restriction
enzyme ApeKI, a type II restriction endonuclease, barcoded
by accession, and sequenced on an Illumina HiSeq 2500 as
described (Elshire et al., 2011). SNPs were identified using the
TASSEL-GBS Discovery/Production pipeline (https://bitbucket.
org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipeline).
Chromosomal assignment and position on the physical map of
various SNPs were deduced from the C. annuum whole genome
sequence (WGS) draft at http://peppergenome.snu.ac.kr. SNPs
were designated by chromosome number and position (e.g.,
S10_172735351, which indicates an SNP located at position
172735351 on chromosome 10).

Genome-wide Divergence and Population
Structure Analysis
Genetic diversity values were calculated by a neighbor-joining
algorithm using TASSEL 5. In a second approach, we utilized
IBS and principle component analysis (PCA) with the SNP &
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Variation Suite (SVS v8.1.5) (Golden Helix, Inc., Bozeman, MT,
USA; www.goldenhelix.com). Observed nucleotide diversity (π)
and Tajima’s D were estimated by using TASSEL v5.0 with a
sliding-window approach as described (Korneliussen et al., 2013).
The fixation index (FST) was estimated on the basis of theWright
F statistic (Weir and Cockerham, 1984) with use of SVS v8.1.5.

Characterization of Linkage Disequilibrium
(LD)
For GBS data, we considered only SNPs successfully mapped to
the C. annuum WGS draft, because knowing the chromosome
location of SNPs helps prevent spurious LD and thereby
unreliable association mapping. Mapped SNPs were further
filtered by call rate >90%. Before studying LD decay, haplotype
blocks were calculated for all markers by using the default
settings in SVS v8.1.5. Adjacent and pairwise measurements
of LD for GBS data were calculated separately for SNPs in
each chromosome. For computing LD, we used the expectation-
maximization (EM) algorithm (Dempster et al., 1977) as an
iterative technique for obtaining maximum likelihood estimates
of sample haplotype frequencies.

GWAS Mapping
The PC matrix was constructed with the program
“EIGENSTRAT” (http://genetics.med.harvard.edu/reich/
Reich_Lab/) and the PCA correction technique; the method
of stratification was as described (Price et al., 2006). IBS was
calculated as described (Purcell et al., 2007). GWAS involved a
single-locus mixed linear model (SLMM), a method that uses a
forward and backward stepwise approach to select markers as
fixed-effects covariates in the model (Segura et al., 2012), and
implemented in SVS v8.1.5. We used a PC matrix to correct
for population stratification and an IBS matrix to correct for
a polygenic background. Manhattan plots for associated SNPs
were visualized by using GenomeBrowse v1.0 (Golden Helix,
Inc.). The SNP P-values from GWAS underwent false discovery
rate (FDR) analysis (Storey, 2002).

RESULTS

SNP Development
A total of 77,407 SNPs were isolated from the nucleotide
sequence obtained for the 283 C. baccatum and 94 C. annuum
accessions studied; a total of 8661, 8086, 9843, 6197, 5688, 7410,
5588, 5086, 4472, 5336, 5079, and 5961 SNPs were mapped to the
WGS draft and located on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, and 12, respectively. We noted the presence of one SNP at
every 35.6 kb across the genome, with average gap size of 31.7 kb
and one SNP at every 104.4 kb in the coding regions. A total of
36,621 SNPs had minor allele frequency [MAF] ≥0.05, identified
collectively for C. annuum and C. baccatum, and were used for
various analyses in the current study. For C. baccatum, 13,129
SNPs had MAF≥0.05; their chromosome distribution is listed in
Table 1. In addition, we identified 26,697 SNPs located in various
exons. SNP counts in exons of various genes were 2985, 3308,
3630, 2032, 1837, 2474, 1897, 1758, 1406, 1799, 1550, and 2021 on
chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, respectively.

TABLE 1 | Chromosome-wise distribution 13,129 SNPs with MAF of ≥0.05

for C. baccatum collections.

Chromosome number No. of SNPS

1 1443

2 1220

3 1447

4 1259

5 1198

6 1302

7 844

8 752

9 752

10 970

11 922

12 1020

Total 13,129

Population Stratification
We used PCA of the 36,621 SNPs identified from C. baccatum
and C. annuum with MAF ≥0.05 to characterize domesticated
and wild C. annuum and C. baccatum peppers. PCA with
first and second eigen vectors that explained 80% of the total
variation produced two clusters of C. baccatum and C. annuum
accessions (Figure 1). Tepin and Tepin Guatemala, two wild
peppers belonging to C. annuum var. glabriusculum that are
native to southern North America and northern South America,
were close to CB-77, a wild C. baccatum pepper. Similarly,
three other wild C. baccatum peppers, CB-93, CB-92, and CB-
40, were intermediate between the major C. annuum and C.
baccatum clusters. A third cluster comprised the remaining wild,
semi-domesticated and crown shaped fruit type C. baccatum
accessions that grouped with the domesticated large-fruited C.
baccatum peppers. A separate PCA with 13,129 SNPs that were
polymorphic for C. baccatum accessions resolved the population
structure comprised by this group ofC. baccatum accessions. This
PCA identified 283 C. baccatum accessions in 3 distinct clusters
(Figure 2). The middle cluster (cluster II) was parallel to the C.
annuum cluster, and the wild species Tepin, Tepin Guatemala,
CB-77, CB-93, CB-92, and CB-40 were found in the middle,
which indicates intercrossing between wild C. annuum and C.
baccatum peppers while or before domestication. PCA placement
of various accessions are noted in Tables S2, S3.

Fixation Index (FST ) Distribution to Locate
Positive Selection Footprints
FST was estimated with 95% confidence intervals between wild
and domesticated C. annuum and C. baccatum. The FST between
wild (C. annuum + C. baccatum) and domesticated (C. annuum
+ C. baccatum) accessions was 0.09 and 0.05, respectively.
The FSTbetween domesticated C. annuum and C. baccatum
was 0.78, which indicates genome-wide divergence. The FST
between wild C. baccatum and wild C. annuum was 0.66. Crown-
shaped fruited C. baccatum types are unique for this species
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FIGURE 1 | First and second principal component analysis (PCA) components for 36,621 single nucleotide polymorphisms (SNPs) in a set of 377

diverse pepper accessions (283 Capsicum baccatum and 94 C. annuum accessions). See Table S2 for a list of accessions and eigen values for respective

positions of individual accessions in the figure.

group, and pairwise FST values with wild, semi-domesticated
and domesticated were 0.10, 0.06, and 0.03, respectively, which
indicates their closeness to domesticated types. FST-values for
semi-domesticated with wild and domesticated C. baccatum
types were 0.03 and 0.01, respectively. We present an overall
FST distribution in a Manhattan plot for all chromosomes
showing important chromosomal regions with the highest FST
as peaks (Figure 3, Table S4). Based on FST values, peaks on
chromosomes 1, 2, 3, 4, 5, 6, and 9 in theManhattan plot might be
the regions of positive selection and important for improvement.

Because of the strong population structure, we assessed
patterns of variation separately for each group of domesticated
accessions from the respective species when making inferences
about the evolutionary dynamics of domestication. Crop
domestication is often associated with “population bottlenecks”
because of the limited number of founding individuals
experiencing domestication events. These bottlenecks may be
evident in pepper when comparing diversity between cultivated
forms of C. annuum and C. baccatum. We estimated nucleotide
diversity (π) and Tajima’s D across various chromosomes to
understand genome-wide bottleneck effects. The frequency of
segregating SNPs as reflected by various chromosomal measures
of mean π and Tajima’s D is presented in Figure 4. For cultivated
C. baccatum, chromosome 4 was positive for π and Tajima’s
D which indicates accumulation of rapid mutations on this
chromosome. The remaining chromosomes were negative or
nearly negative for Tajima’s D, which indicates bottlenecks

in domestication. In contrast, C. annuum chromosomes were
positive for Tajima’s D on all chromosomes except chromosome
8, which indicates differential evolution after the domestication
or the influence of diverse breeding.

LD Analysis for C. baccatum
We conducted an extensive LD analysis on the entire dataset
of C. baccatum accessions on all adjacent marker pairs within a
chromosome or within a haplotype block. Haplotype distribution
is important to understand patterns of genetic variation of C.
baccatum gene pools and has a wide range of applications.
The 2 major processes that shape haplotype structure are the
domestication process and breeding history. We used “minimize
historical recombination,” a block-defining algorithm developed
by Gabriel et al. (2002). The upper confidence boundary was
set to 0.98 and the lower boundary to 0.70. SNPs with MAF
<0.05 were omitted. Maximum block length was set to 160
kb. The expectation maximization (EM) algorithm was used
for haplotype estimation, with convergence tolerance 0.0001,
and frequency threshold 0.01. Maximum EM iterations were
set to 50. We identified 1742 haplotypes containing 4420 SNPs,
with a range of 9–2 SNPs per haplotype (Table S5). The results
provided values for both the EM algorithm (Dempster et al.,
1977) and composite haplotype method (CHM; Weir and
Cockerham, 1996). Squared-allele frequency correlations (r2)
and LD estimate (D′) for the EM and CHM methods are in
Table S6. We created LD plots by using marker-pair associations
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FIGURE 2 | First and second PCA components for 13,129 SNPs within 283 C. baccatum accessions. See Table S3 for a list of accessions and eigen values

for respective positions of individual accessions in the figure.

FIGURE 3 | Manhattan plot of chromosome-wise overall fixation index (FST ) values for 283 C. baccatum accessions. Individual FST -values are in Table S4.

of adjacent SNPs within a chromosome, within a haplotype
block, and within genes (Figure 5). The length of individual
LD blocks varied among chromosomes, with regions of high
and low LD interspersed (Table 2). The genome-wide average
LD block was 99.1 kb. The largest LD block, of 13,021 kb, was
on chromosome 11. Pairwise LD was estimated by r2 and we
compared the pattern of decay at different levels. With pair-
wise analysis considering adjacent SNPs across chromosomes,
most SNP associations were within 50 kb (Figure 5). The second
analysis based on adjacent SNPs within haplotypes revealed
most associations within 20 kb (Figure S1). The third analysis
of SNPs located in genes revealed most associations within 5 kb
(Figure S2).

GWAS for Peduncle Length
Peduncle length is the prime differentiating trait between
wild and domesticated forms of C. baccatum. Mean peduncle
lengths for respective accessions are listed in Table S7. The
cultivated form of C. baccatum, var. pendulum, is named based
on the epithet related to pendant fruits. In our GWAS, 36
SNPs located on chromosomes 1, 2, 3, 4, 6, 7, 8, 9, 10, and
11 were identified as significantly associated with peduncle
length and cumulatively explained 21% of the total variation
(Figure 6). Four SNPs located in the intergenic space between
the oxidoreductase family protein/arogenate dehydrogenase
on chromosome 7 explained 10.6% of the total variation.
Chromosome number, map position, P-value, regression beta,
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FIGURE 4 | Frequency spectrum for chromosomal means for nucleotide diversity (π) and Tajima’s D for C. annuum (CA) and C. baccatum (CB)

domesticated accessions.

FIGURE 5 | Genome-wide distribution of marker associations (r2) based on expectation-maximization (EM) analysis for adjacent SNPs across

chromosomes showing most SNP associations (LD) decay within 50kb.

FDR correction, variance explained, call rate, and minor/major
allele frequencies for all significantly associated SNPs are in
Table S8.

Candidate Gene Selection
The predicted gene set from the annotated C. annuum cv.
CM334 reference genome (Kim et al., 2014) was used to
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TABLE 2 | Chromosome-wise distribution of LD blocks for C. baccatum

var. pendulum.

Chromosome LD analysis with adjacent SNPs

number No. of SNP

associations

Mean LD block

size (Kb)

Maximum LD

block size (Kb)

1 721 71.861 3948.923

2 636 91.05 10856.72

3 756 67.397 3122.154

4 603 88.686 7216.827

5 670 110.614 6046.404

6 670 88.726 4043.506

7 390 90.642 4527.862

8 400 96.781 6962.39

9 401 169.852 4569.492

10 471 138.615 8694.085

11 494 117.027 13021.65

12 533 104.171 7352.753

Overall 6745 99.11 13021.65

characterize the genes containing SNPs or nearby SNPs. Eleven
candidate genes containing SNPs in exons or promoters were
significantly associated with peduncle length, and 12 more
SNPs in introns or intergenic regions of candidate genes
were proposed. GWAS details and strengths of association
of SNPs are in Table S8. Details of annotation for various
associated SNPs, their location in various genes and type
of mutation (synonymous or non-synonymous) are in
Table 3.

DISCUSSION

The cultivated pepper species, C. baccatum, known as aji
or Peruvian hot pepper, is a valuable source of novel genes
that has not yet been analyzed for genome-wide diversity
and population structure (Albrecht et al., 2012). Our genome-
wide diversity analysis showed that many domesticated C.
baccatum var. pendulum from western Bolivia/Peru and eastern
Brazil/Paraguay cluster with most wild-type C. baccatum var.
baccatum, suggesting that they may be the ancestral cluster. The
flow of the river RioMizque from the south to join the Amazon is
through lowland tropical Bolivia and the Amazon Basin and thus
includes both the range of the C. baccatum group and a portion
of the range of the C. annuum group (Eshbaugh, 1980). McLeod
et al. (1982) suggested that the white-flowered ancestor migrated
to dry areas of southern Bolivia, to produce the C. baccatum
group, and the wild form in the wetter Amazon basin developed
into the wild progenitor for C. annuum.

Our comparative divergence analysis across the chromosomes
for C. annuum and C. baccatum revealed that chromosome
4 of C. baccatum had a unique divergence history, and for
C. annuum, chromosome 8 showed a differential evolution when
comparing mean π and Tajima’s D for various chromosomes. In

addition, biased distribution of Tajima’s D toward negative values
on all chromosomes (except chromosome 4) in cultivated C.
baccatum indicates a population bottleneck during domestication
or through the breeding histories, or the speciation of C.
baccatum might have occurred with relatively narrow genetic
diversity. In contrast, C. annuum chromosomes showed positive
Tajima’s D on all chromosomes except chromosome 8, which
indicates that speciation or domestication of C. annuum might
have occurred at multiple sites, contributing to wider genetic
diversity as discussed by Kraft et al. (2014). Subsequent spread
of C. annuum cultivars across the world and exposure to diverse
breeding programs or selection in conjunction with diverse
ecological adaptation might explain such rapid population size
expansion and recovery from the bottleneck effects. The genome
size of C. annuum types was estimated to be 3691 Mbp and
C. baccatum was 4048 Mbp, which indicates wide divergence
between these 2 cultivated pepper genomes (Belletti et al., 1998).
Tang et al. (2006) concluded that unusually divergent genomic
regions between closely related rice species are informative
about species incompatibility or reproductive barriers resulting
in partial fertility. Similar to the current findings, several reports
implicated newly recruited polymorphisms as causing highly
divergent genomic regions that may control traits associated with
reproductive incompatibility or ecological adaptation (Wu, 2001;
Wu and Ting, 2004).

Current advances in genome sequencing for identifying
genome-wide SNPs andmapping them toWGS drafts allowed for
scanning of LD decay across the genome. LD, the non-random
association of alleles at different loci and germplasm panels that
represent genome-wide cultivar diversity (power of association
panel), plays an integral role in GWAS and determines the
density of SNPs required for GWAS (Flint-Garcia et al., 2003;
Nicolas et al., 2016). Low to moderate LD (decay within 100 kb)
such as that observed for theC. baccatum panel in our studymust
utilize high SNP density (Kovi et al., 2015). In this study, we noted
the highest LD for chromosome 11. One explanation for such
variable LD is the “Bulmer effect,” whereby high LD regions are
generally associated with selective sweeps harboring important
genes underlying domestication (Bulmer, 1971; Kovi et al., 2015).
The stochastic process that generates LD during selective sweeps
is because of a spontaneous mutation leading to an advantageous
effect or LD decays with recombination with a diverse haplotype
and further segregation (Baird, 2015).

GWAS for Peduncle Length
Wild C. baccatum has a relatively restricted distribution confined
to southern Peru, Bolivia, and southern Brazil (Eshbaugh, 1970).
C. baccatum var. pendulum is a widely distributed cultivated plant
found throughout western South America and now spreading
worldwide (Eshbaugh, 1970). Wild C. baccatum has red, erect,
and non-persistent fruits, and C. baccatum var. pendulum has
red, orange, yellow, green, or brown fruits that are pendant
and persistent. Because the peduncle is the most differentiating
trait between domesticated and wild C. baccatum species, we
performed GWAS for peduncle length. We associated 36 SNPs
with the trait peduncle. Four of these SNPs clustered with
candidate genes on chromosome 7. Annotation for some of these
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FIGURE 6 | Manhattan plot of the genome-wide association study for peduncle length in C. baccatum var. pendulum. (A) Range of observed peduncle

length. (B) Chromosome coordinates are on the X-axis, with the negative log-10 of the association P-value for each SNP on the Y-axis. High negative log-10 indicates

strong association with the trait. Histograms show effects of significantly associated SNPs for peduncle length. (C) Four SNPs located in the intergenic space between

the oxidoreductase family protein/arogenate dehydrogenase on chromosome 7 that explained 10.6% of the total variation for peduncle length.

associated SNP-containing sequences revealed their location in
various genes, so these genes might play a role in peduncle length,
peduncle architecture and C. baccatum domestication.

Length of peduncle is determined by the cell number or cell
size, although it is indirectly regulated by hormones and multiple
pathways. Kinases play important roles in plant growth and
development. Peduncle associated SNPs in the current study were
located in leucine-rich repeat receptor like kinases (LRR-RLKs),
serine/threonine protein kinase, ABC transporter gene and RING
finger protein, which may play important roles in growth and
development as well as cell wall integrity and elongation as has
been shown in other plants (Lally et al., 2001; Arunyawat et al.,
2007; Guo et al., 2009; Gish and Clark, 2011; Ghosh et al., 2013).
Plant cell walls contain a glycoprotein component rich in the
otherwise rare amino acid hydroxyproline and accumulation of

this amino acid was positively correlated with cell elongation in
pea epicotyls (Flint-Garcia et al., 2003). In the current study, we
also associated a marker S11_725918 on GABA (γ-aminobutyric
acid), a ubiquitous non-protein amino acid. An Arabidopsis
GABA gene mutant pop2 exhibited defects in hypocotyl cell
elongation and pollen-tube elongation via influence on cell-wall–
related genes (Bulmer, 1971).

Our study describes the utility of SNPs generated by GBS for
genome-wide divergence and LD patterns between C. annuum
and C. baccatum. Mapping all the SNPs to the C. annuum
reference genome helped to identify homologous SNPs between
the two incompatible cultivated pepper genomes, which was
further useful to reduce ascertainment bias, so this SNP set was
useful in estimating genome-wide population differentiation and
allele sharing between the two genomes. Furthermore, the SNPs
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TABLE 3 | Annotation of significantly associated SNPs for peduncle length in C. baccatum var. pendulum.

Marker P-Value −log10(P-Value) FDR Locus ID Location Ma→Mi Sy/NSy Annotation/Function

S7_19145046 1.13E−06 5.947 0.015 CA07g03460/CA07g03470 Intergenic G→C – Oxidoreductase family

protein/Arogenate dehydrogenase

S7_19145048 1.13E−06 5.947 0.007 ” ” C→T ” Oxidoreductase family

protein/Arogenate dehydrogenase

S7_19145066 1.13E−06 5.947 0.005 ” ” T→A ” Oxidoreductase family

protein/Arogenate dehydrogenase

S7_19145073 1.13E−06 5.947 0.004 ” ” C→T ” Oxidoreductase family

protein/Arogenate dehydrogenase

S2_134518344 3.89E−06 5.410 0.010 CA02g11490 Exon G→C R→P* Phospho-n-acetylmuramoyl-

pentapeptide-transferase

S11_725918 7.48E−06 5.126 0.016 CA11g00270/CA11g00280 Intergenic C→G – GABA-specific permease/Unknown

protein

S2_121116327 2.01E−05 4.697 0.038 CA02g09090 Exon G→T T→K* LON peptidase N-terminal domain

and RING finger protein

S3_12740983 2.22E−05 4.653 0.036 CA03g04980 Intron C→T – Eukaryotic translation initiation factor

2 subunit alpha

S11_190326151 3.12E−05 4.505 0.046 CA11g12020 Exon G→A S→S Tho2 protein

S11_3937182 5.13E−05 4.289 0.061 CA11g01740 Exon T→A Q→L* Hydroxyproline-rich glycoprotein

S3_200716267 6.71E−05 4.173 0.073 CA03g17680 Intron A→C – Pre-mRNA cleavage factor IM

S11_246730373 0.0001 3.916 0.122 CA11g15960 Intron G→A – ATP-dependent RNA helicase

S4_137196865 0.0001 3.864 0.128 CA04g10860/CA04g10870 Intergenic C→T – Amino acid transporter/UDP-glucose

6-dehydrogenase

S4_137196912 0.0001 3.864 0.120 ” ” C→A ” Amino acid transporter/UDP-glucose

6-dehydrogenase

S10_223493543 0.0002 3.807 0.128 CA10g17500/CA10g17510 Intergenic C→G Cytochrome b559 subunit

alpha/Aluminum-activated malate

transporter

S8_126682716 0.0002 3.730 0.144 CA08g09170 Exon C→T G→R* Ribosomal protein S11

S8_126682746 0.0002 3.730 0.136 ” ” C→A A→S* Ribosomal protein S11

S9_252073885 0.0004 3.449 0.195 CA09g18340 Promoter G→A – Reticulon-like protein B21

S9_252073890 0.0004 3.449 0.187 ” ” G→A ” Reticulon-like protein B21

S11_190326131 0.0004 3.449 0.180 CA11g12020 Exon G→A S→L* Tho2 protein

S10_229515157 0.0004 3.412 0.188 CA10g19840 Exon G→A S→F* Uncharacterized protein

S6_2635088 0.0004 3.381 0.195 CA06g01230/CA06g01240 Intergenic T→C – Late blight resistance protein

Rpi-blb2/Detected protein of

confused Function

S8_142510499 0.0005 3.315 0.219 CA08g18030 Exon A→T M→L* Serine/Threonine-protein kinase

SMG1

S1_96976222 0.0005 3.285 0.227 CA01g16010 Exon T→C T→T Phytochrome

S2_139076418 0.0005 3.263 0.231 CA02g13050 Intron T→G – Ureidoglycolate hydrolase

S3_70295226 0.0006 3.220 0.247 CA03g11420/CA03g11430 Intergenic C→T – Detected protein of confused

Function/NADH dehydrogenase

subunit

S3_257225287 0.0006 3.188 0.251 CA03g36710/CA03g36720 Intergenic C→T – LRR receptor protein kinase/LRR

receptor protein kinase

S11_257395608 0.0007 3.183 0.246 CA11g19730 Exon C→T H→H ABC transporter

S11_257395610 0.0007 3.183 0.239 ” ” C→A A→D* ABC transporter

S2_130946711 0.0007 3.180 0.234 CA02g10590/CA02g10600 Intergenic C→T – Nucleic acid binding

protein/cleavage and

polyadenylation specificity factor

CPSF30

S3_252341359 0.0008 3.078 0.289 CA03g33810 Intron T→G – DNase I-like superfamily protein

S1_131644198 0.0009 3.046 0.303 CA01g17480 Promoter A→G – Diacylglycerol kinase variant B

*Nonsynonymous mutation on amino acid due to minor/major allele SNP variation.

anchored to the C. annuum genome may not be in the same
order in the C. baccatum genome because some genomic regions
may not be co-linear to the C. annuum genome because of

genome rearrangements. In a comparison of C. baccatum and
C. annuum linkage maps, Lee et al. (2016) identified two major
reciprocal translocations between chromosomes 3 and 5 and
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between chromosomes 3 and 9, as well as translocations between
chromosomes 1 and 8.

Such uncertain positions of SNPs can be corrected only
when the whole genomesequence is available for C. baccatum
genome. This SNP panel and the results pertaining to population
structure, IBS and LD decay analyses will facilitate routine
use of GWAS for identification of genes associated with
various economically important traits in Peruvian peppers. Our
identification of SNPs associated with fruit peduncle length
demonstrates opportunities for utilization of GWAS in crop
improvement.
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