108 research outputs found

    Qualitative study exploring the phenomenon of multiple electronic prescribing systems within single hospital organisations

    Get PDF
    BACKGROUND: A previous census of electronic prescribing (EP) systems in England showed that more than half of hospitals with EP reported more than one EP system within the same hospital. Our objectives were to describe the rationale for having multiple EP systems within a single hospital, and to explore perceptions of stakeholders about the advantages and disadvantages of multiple systems including any impact on patient safety. METHODS: Hospitals were selected from previous census respondents. A decision matrix was developed to achieve a maximum variation sample, and snowball sampling used to recruit stakeholders of different professional backgrounds. We then used an a priori framework to guide and analyse semi-structured interviews. RESULTS: Ten participants, comprising pharmacists and doctors and a nurse, were interviewed from four hospitals. The findings suggest that use of multiple EP systems was not strategically planned. Three co-existing models of EP systems adoption in hospitals were identified: organisation-led, clinician-led and clinical network-led, which may have contributed to multiple systems use. Although there were some perceived benefits of multiple EP systems, particularly in niche specialities, many disadvantages were described. These included issues related to access, staff training, workflow, work duplication, and system interfacing. Fragmentation of documentation of the patient's journey was a major safety concern. DISCUSSION: The complexity of EP systems' adoption and deficiencies in IT strategic planning may have contributed to multiple EP systems use in the NHS. In the near to mid-term, multiple EP systems may remain in place in many English hospitals, which may create challenges to quality and patient safety.Peer reviewe

    Resolving the ancestry of Austronesian-speaking populations

    Get PDF
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion

    Removing leakage-induced correlated errors in superconducting quantum error correction

    Full text link
    Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing

    Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits

    Full text link
    Scalable quantum computing can become a reality with error correction, provided coherent qubits can be constructed in large arrays. The key premise is that physical errors can remain both small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, energetic impacts from cosmic rays and latent radioactivity violate both of these assumptions. An impinging particle ionizes the substrate, radiating high energy phonons that induce a burst of quasiparticles, destroying qubit coherence throughout the device. High-energy radiation has been identified as a source of error in pilot superconducting quantum devices, but lacking a measurement technique able to resolve a single event in detail, the effect on large scale algorithms and error correction in particular remains an open question. Elucidating the physics involved requires operating large numbers of qubits at the same rapid timescales as in error correction, exposing the event's evolution in time and spread in space. Here, we directly observe high-energy rays impacting a large-scale quantum processor. We introduce a rapid space and time-multiplexed measurement method and identify large bursts of quasiparticles that simultaneously and severely limit the energy coherence of all qubits, causing chip-wide failure. We track the events from their initial localised impact to high error rates across the chip. Our results provide direct insights into the scale and dynamics of these damaging error bursts in large-scale devices, and highlight the necessity of mitigation to enable quantum computing to scale

    Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    Get PDF
    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication

    Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.

    Get PDF
    Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments

    Live Imaging of Innate Immune Cell Sensing of Transformed Cells in Zebrafish Larvae: Parallels between Tumor Initiation and Wound Inflammation

    Get PDF
    Live imaging and genetic studies of the initial interactions between leukocytes and transformed cells in zebrafish larvae indicate an attractant role for H2O2 and suggest that blocking these early interactions reduces expansion of transformed cell clones
    corecore