202 research outputs found

    A Unified Surface Geometric Framework for Feature-Aware Denoising, Hole Filling and Context-Aware Completion

    Get PDF
    Technologies for 3D data acquisition and 3D printing have enormously developed in the past few years, and, consequently, the demand for 3D virtual twins of the original scanned objects has increased. In this context, feature-aware denoising, hole filling and context-aware completion are three essential (but far from trivial) tasks. In this work, they are integrated within a geometric framework and realized through a unified variational model aiming at recovering triangulated surfaces from scanned, damaged and possibly incomplete noisy observations. The underlying non-convex optimization problem incorporates two regularisation terms: a discrete approximation of the Willmore energy forcing local sphericity and suited for the recovery of rounded features, and an approximation of the l(0) pseudo-norm penalty favouring sparsity in the normal variation. The proposed numerical method solving the model is parameterization-free, avoids expensive implicit volumebased computations and based on the efficient use of the Alternating Direction Method of Multipliers. Experiments show how the proposed framework can provide a robust and elegant solution suited for accurate restorations even in the presence of severe random noise and large damaged areas

    NetFPGA Hardware Modules for Input, Output and EWMA Bit-Rate Computation

    Get PDF
    NetFPGA is a hardware board that it is becoming increasingly popular in various research areas. It is a hardware customizable router and it can be used to study, implement and test new protocols and techniques directly in hardware. It allows researchers to experience a more real experiment environment. In this paper we present a work about the design and development of four new modules built on top of the NetFPGA Reference Router design. In particular, they compute the input and output bit rate run time and provide an estimation of the input bit rate based on an EWMA filter. Moreover we extended the rate limiter module which is embedded within the output queues in order to test our improved Reference Router. Along the paper we explain in detail each module as far as the architecture and the implementation are concerned. Furthermore, we created a testing environment which show the effectiveness and effciency of our module

    Performance comparison between the Click Modular Router and the NetFPGA

    Get PDF
    It is possible to forward minimum-sized packets at rates of hundreds of Mbps using commodity hardware and Linux. We had a preference for the Click Modular Router platform due its flexibility and the fact that it claimed to have equal or higher performance than native forwarding if used with its polling drivers. Moreover, the NetFPGA is an open networking platform accelerator that enables researchers and instructors to build working prototypes of high-speed, hardware-accelerated networking systems. NetFPGA reference designs comprised in the system include an IPv4 router, an Ethernet switch, a four-port NIC, and SCONE (Software Component of NetFPGA). Researchers have used the platform to build advanced network flow processing systems. We have followed the RFC1242 - Benchmarking Terminology for Network Interconnection Devices - and the RFC2544 - Benchmarking Methodology for Network Interconnection Devices - in order to define the specific set of tests to use to describe the performance characteristics of the two routers. We have also shown a test comparison between the NetFPGA and the Click router about a file transfer using the FTP and the HTTP protocol.Overall, the NetFPGA router performance outperforms the Click router performance

    Shear capacity in concrete beams reinforced by stirrups with two different inclinations

    Get PDF
    A model for the estimation of shear capacity in Reinforced Concrete (RC) beams with web reinforcement is provided by introducing a generalization of classical plastic Nielsen’s model, which is based on the variable-inclination stress-field approach. The proposed model is able to predict the shear capacity in RC beams reinforced by means of stirrups having two different inclinations and longitudinal web bars. A numerical comparison with the results of experimental tests and those provided by a Finite Element Model (FEM) based on the well known theory of Modified Compression Field Theory (MCFT) is carried out for validating the robustness of the proposed model. Finally, a set of parametrical analyses demonstrates the efficiency of the proposed double transverse-reinforcement system in enhancing the shear capacity of RC beam

    CulturAI: Semantic Enrichment of Cultural Data Leveraging Artificial Intelligence

    Get PDF
    In this paper, we propose an innovative tool able to enrich cultural and creative spots (gems, hereinafter) extracted from the European Commission Cultural Gems portal, by suggesting relevant keywords (tags) and YouTube videos (represented with proper thumbnails). On the one hand, the system queries the YouTube search portal, selects the videos most related to the given gem, and extracts a set of meaningful thumbnails for each video. On the other hand, each tag is selected by identifying semantically related popular search queries (i.e., trends). In particular, trends are retrieved by querying the Google Trends platform. A further novelty is that our system suggests contents in a dynamic way. Indeed, as for both YouTube and Google Trends platforms the results of a given query include the most popular videos/trends, such that a gem may constantly be updated with trendy content by periodically running the tool. The system has been tested on a set of gems and evaluated with the support of human annotators. The results highlighted the effectiveness of our proposal

    A blockchain-based distributed paradigm to secure localization services

    Get PDF
    In recent decades, modern societies are experiencing an increasing adoption of interconnected smart devices. This revolution involves not only canonical devices such as smartphones and tablets, but also simple objects like light bulbs. Named the Internet of Things (IoT), this ever-growing scenario offers enormous opportunities in many areas of modern society, especially if joined by other emerging technologies such as, for example, the blockchain. Indeed, the latter allows users to certify transactions publicly, without relying on central authorities or intermediaries. This work aims to exploit the scenario above by proposing a novel blockchain-based distributed paradigm to secure localization services, here named the Internet of Entities (IoE). It represents a mechanism for the reliable localization of people and things, and it exploits the increasing number of existing wireless devices and blockchain-based distributed ledger technologies. Moreover, unlike most of the canonical localization approaches, it is strongly oriented towards the protection of the users’ privacy. Finally, its implementation requires minimal efforts since it employs the existing infrastructures and devices, thus giving life to a new and wide data environment, exploitable in many domains, such as e-health, smart cities, and smart mobility

    Popularity prediction of instagram posts

    Get PDF
    Predicting the popularity of posts on social networks has taken on significant importance in recent years, and several social media management tools now offer solutions to improve and optimize the quality of published content and to enhance the attractiveness of companies and organizations. Scientific research has recently moved in this direction, with the aim of exploiting advanced techniques such as machine learning, deep learning, natural language processing, etc., to support such tools. In light of the above, in this work we aim to address the challenge of predicting the popularity of a future post on Instagram, by defining the problem as a classification task and by proposing an original approach based on Gradient Boosting and feature engineering, which led us to promising experimental results. The proposed approach exploits big data technologies for scalability and efficiency, and it is general enough to be applied to other social media as well

    A P2P Platform for real-time multicast video streaming leveraging on scalable multiple descriptions to cope with bandwidth fluctuations

    Get PDF
    In the immediate future video distribution applications will increase their diffusion thanks tothe ever-increasing user capabilities and improvements in the Internet access speed and performance.The target of this paper is to propose a content delivery system for real-time streaming services based ona peer-to-peer approach that exploits multicast overlay organization of the peers to address thechallenges due to bandwidth heterogeneity. To improve reliability and flexibility, video is coded using ascalable multiple description approach that allows delivery of sub-streams over multiple trees andallows rate adaptation along the trees as the available bandwidth changes. Moreover, we have deployeda new algorithm for tree-based topology management of the overlay network. In fact, tree based overlaynetworks better perform in terms of end-to-end delay and ordered delivery of video flow packets withrespect to mesh based ones. We also show with a case study that the proposed system works better thansimilar systems using only either multicast or multiple trees

    Explainable Machine Learning Exploiting News and Domain-Specific Lexicon for Stock Market Forecasting

    Get PDF
    In this manuscript, we propose a Machine Learning approach to tackle a binary classification problem whose goal is to predict the magnitude (high or low) of future stock price variations for individual companies of the SP 500 index. Sets of lexicons are generated from globally published articles with the goal of identifying the most impactful words on the market in a specific time interval and within a certain business sector. A feature engineering process is then performed out of the generated lexicons, and the obtained features are fed to a Decision Tree classifier. The predicted label (high or low) represents the underlying company's stock price variation on the next day, being either higher or lower than a certain threshold. The performance evaluation we have carried out through a walk-forward strategy, and against a set of solid baselines, shows that our approach clearly outperforms the competitors. Moreover, the devised Artificial Intelligence (AI) approach is explainable, in the sense that we analyze the white-box behind the classifier and provide a set of explanations on the obtained results

    Ensembling and Dynamic Asset Selection for Risk-Controlled Statistical Arbitrage

    Get PDF
    In recent years, machine learning algorithms have been successfully employed to leverage the potential of identifying hidden patterns of financial market behavior and, consequently, have become a land of opportunities for financial applications such as algorithmic trading. In this paper, we propose a statistical arbitrage trading strategy with two key elements: an ensemble of regression algorithms for asset return prediction, followed by a dynamic asset selection. More specifically, we construct an extremely heterogeneous ensemble ensuring model diversity by using state-of-the-art machine learning algorithms, data diversity by using a feature selection process, and method diversity by using individual models for each asset, as well models that learn cross-sectional across multiple assets. Then, their predictive results are fed into a quality assurance mechanism that prunes assets with poor forecasting performance in the previous periods. We evaluate the approach on historical data of component stocks of the SP500 index. By performing an in-depth risk-return analysis, we show that this setup outperforms highly competitive trading strategies considered as baselines. Experimentally, we show that the dynamic asset selection enhances overall trading performance both in terms of return and risk. Moreover, the proposed approach proved to yield superior results during both financial turmoil and massive market growth periods, and it showed to have general application for any risk-balanced trading strategy aiming to exploit different asset classes
    • …
    corecore