
NetFPGA Hardware Modules for Input, Output and
EWMA Bit-Rate Computation

1Alfio Lombardo, 2Diego Reforgiato, 2Vincenzo Riccobene, 1Giovanni Schembra
1Dipartimento di Ingegneria Elettrica, Elettronica e Informatica

1University of Catania
2LightComm s.r.l.

Email: 1{alfio.lombardo, schembra}@dieei.unict.it,
2{diego.reforgiato, econet}@lightcomm.it

Abstract

NetFPGA is a hardware board that it is becoming increasingly popular in various research
areas. It is a hardware customizable router and it can be used to study, implement and test
new protocols and techniques directly in hardware. It allows researchers to experience a
more real experiment environment. In this paper we present a work about the design and
development of four new modules built on top of the NetFPGA Reference Router design. In
particular, they compute the input and output bit rate run time and provide an estimation
of the input bit rate based on an EWMA filter. Moreover we extended the rate limiter
module which is embedded within the output queues in order to test our improved Reference
Router. Along the paper we explain in detail each module as far as the architecture and the
implementation are concerned. Furthermore, we created a testing environment which show
the effectiveness and efficiency of our modules.

1: Introduction

The NetFPGA [11] is an accelerated network hardware that augments the functions of
a standard computer. It provides an open router with four 1 Gbps Ethernet ports largely
used in the research community, to develop and test innovative networking solution on a real
environments. At the center of the NetFPGA board is a Xilinx FPGA device. Surrounding
the FPGA are four memory devices, two Static RAMs (SRAMs) and two second-generation
Double Date Rate (DDR2) SDRAM devices. On the left side of the platform, a quad-port
physical-layer transceiver (PHY), that enables the platform to send and receive packets over
four standard twisted-pair Ethernet cables, is provided. On the right side of the board, two
Serial ATA (SATA) connectors on the platform allow multiple NetFPGAs within a system
to exchange data at high speeds without using the PCI bus. The NetFPGA core clock
works at 125 MHz, meaning that each clock cycle lasts 8 ns. The FPGA directly handles
all data-path switching, routing, and processing operations of Ethernet frames and Internet
packets, leaving software to handle control-path functions only [19]. The NetFPGA fits into
a host PC via a PCI slot. Software and gateware (Verilog HDL source code) packages are
available for download under an open source license from the NetFPGA website [1].

Working with NetFPGA platform, a developer can either implement its own project
or extend existing ones in order to augment their functionalities. Therefore, this allows

1

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

121

RonCay
Rectangle



jump starting prototypes and quickly building on existing projects already developed in
the NetFPGA (see the NetFPGA project page [2]). One of the main NetFPGA projects,
the Reference Router [3], is a complete IPv4 router which is able to simultaneously forward
packets from all four 1 Gbps interfaces on the NetFPGA card.

The NetFPGA board is programmable using the Verilog language. Each time a new or
extended Verilog project is completed, it can be uploaded on the board using appropriate
software tools released with the platform. Of course, it is required a communication between
the NetFPGA board and the host computer especially if the latter has to show some current
results of the board to the user. This is accomplished through the use of the Register
System [4], which is a standard set of registers that can be used by hardware and software
modules to read and write data and, consequently, to exchange data between them. These
registers contain some parameters for general use, typically used in order to control and
monitor the platform in almost all aspects. The Register System provides a mechanism for:

• specifying the registers supplied by each module;

• specifying the modules used by each project;

• generating a register map/memory allocation for each project.

Information for each project (eg. name, list of modules, location of modules in memory
space) and each module (eg. name, list of registers) is specified in an XML file. The register
generation tool, provided within the platform, reads the XML file of the project and the
XML files of the included modules, performs memory allocation, and then outputs a set of
files with the memory allocation/register map to files for use in Verilog, C, and Perl.

For example, one of these registers (the CPCI CNET CLK SEL REG register) is respon-
sible for the NetFPGA core clock. Its setting allows to switch the NetFPGA core clock
from 125 MHz to 62.5 MHz and vice-versa. Registers provide several information about
the underlying project loaded into the NetFPGA board. For example, as far as the Refer-
ence Router project is concerned, registers provide various information such as the number
of bytes or packets received within the input and output queues, the number of dropped
packets within the input and the output queues, the number of packet waiting into the
input and output queues, etc.

However, important information is still missing within the registers and in order to
compute that, one has to carefully change the original design, find the required signals
from the Verilog code (it may be needed some hardware computation according to what
kind of information is required), and output those in new ad-hoc registers if they need to
be read or write from software. For example, one could be interested in the effective input
bit rate into the input queues, the effective output bit rate from the output queues, or an
estimation of the input bit rate: in fact, a large set of applications may require that kind
of information.

As far as the bit rate computation is concerned, it is necessary to read the number of
bits received in a certain time window. The number of bytes or packets received to the
Reference Router is an information provided within the NetFPGA registers and accessible
from the software using C or PERL or bash script commands. However, reading hardware
registers from the software takes about 500 µs whereas the board works at 8 ns per cycle.
Thus, if we want to accurately compute the input bit rate from software, we would need to
read the number of bytes received within the input queues each T µs (with T much higher
than 500 to not incur in errors caused by time delays of software reads).

2

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

122

RonCay
Rectangle



Therefore, in order to efficiently and precisely compute the input and output bit rate it
is necessary to add some hardware modules to the original Reference Router design. This
allows to work in the nanoseconds domain rather than microseconds. These modules handle
important signals from the user data path and according to the current clock rate compute
efficiently and accurately the input bit rate, the output bit rate and the exponentially
weighted moving average input bit rate. Moreover, we have extended the original rate
limiter module by adding a more fine-grained limit range for the output bit rate, in order
to create the same conditions when a congestion occurs and test our modules accordingly.

In this paper we have built on top of the Reference Router project four Verilog modules
which work in parallel with respect to the original pipeline. The four modules are:

1. the Input Bit Rate Calculator;

2. the Output Bit Rate Calculator;

3. the EWMA Bit Rate Calculator.

4. an extension of the original rate limiter module.

The first and the second of them are used to compute the current input and output bit
rate, whereas the third is used to estimate the input traffic bit rate through an exponentially
weighted moving average filter. The forth module is an extension of the original rate limiter
module which lies within the Output Queues and it allowed us to test the other modules.

This paper is organized as follows. Section 2 discusses some related works within the
NetFPGA platform that have built on top of the Reference Router. Section 3 describes the
architecture we have designed as well as the technical details of each implemented module.
Section 4 gives the details of the experiments we have carried out, our network topology
and how we have tested our modules. Section 5 compares the device utilization of the
Reference Router design with that of our modules. Finally, Section 6 ends the paper with
conclusions and future directions where we are headed.

2: Related Work

Since its release, the NetFPGA has been enhanced and improved with several modules
and standalone projects for different applications. In this section we will briefly list the
main and most recent projects that have been created on top of the Reference Router.

In [8] the Reference Router has been augmented for real-time extraction of URLs from
packets. This implementation modifies the gateware to filter packets containing a HTTP
GET request and sends a copy to the host. Host software is implemented to extract URLs
and search terms. The software integrates with a database facility and a GUI for offline
display of web-access and search term profiles. On the same topic, authors in [15] proposed
a hardware-based HTTP GET flooding detection and defense system, which can protect a
given web server farm by filtering out malicious HTTP requests based on the difference of
the behavior between normal browsers and bots.

The work done in [21] describes a traffic monitor system implemented on the NetFPGA
Reference Router. It allows network packets to be captured and analyzed from up to
all four of the Gigabit Ethernet ports. Moreover, a developed graphical user interface
shows the traffic of any port. The same authors, in [20], built a system in order to hijack
the incoming packets according to rules specified by the user through ad-hoc NetFPGA
registers. This means that the authors were able to change any field of any incoming

3

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

123

RonCay
Rectangle



packets. Certainly, depending on whether they are changing TCP or IP header fields, they
need to recompute the TCP or IP checksum and store them back into the network packets.
Their implementation works at user data path level and modifies packet fields if certain
conditions defined by the user through NetFPGA registers are satisfied.

In many mission critical real-time networked systems, such as those used in financial
institutions, incoming data (such as market feeds) is brought in on redundant links. These
links are generally provided by separate providers for maximum redundancy. Although the
data on both of these links is expected to be the same, there are delays and packet losses
that can be different. In [13] the authors describe a NetFPGA module which can accurately
measure these delays to help the institutions to evaluate the quality of service provided to
them by their vendors.

Authors in [23] have proposed a light-weight queue management scheme to tackle the
problem of bursty traffic. This scheme was called bounded jitter policy and has been
evaluated using testbed experiments on NetFPGA. Basically, the Reference Router was
changed so that each packet is stored in the SRAM immediately after arrival.

Furthermore, authors in [22] presented an implementation of a Crosspoint-Queued switch
output controller on the NetFPGA where the output controller is a part of design that im-
plements functionality of Crosspoint Queued Ethernet switch and it performs a scheduling
algorithm on the crosspoint buffers. Round robin algorithm is chosen as a scheduling
algorithm. Besides the basic scheduling functions, the output controller performs other
functions such as de-segmentation and error detection, which are needed in order to make
a device fully functional in the real network environment.

Authors in [14] presented the design and prototype of a hardware implementation of a
packet pacing system based on the NetFPGA system. Results showed that traffic pacing
can be implemented with few hardware resources and without reducing system throughput.

A practical and general coder and decoder of network coding has been developed in [24]
within the NetFPGA board where the entire logic of the IP layer has been redesigned.

In [12] authors presented a NetFPGA Logic Analyzer with a triggering mechanism that
captures the control signals and datapath of the NetFPGA at the full 125M samples per
second for the allotted duration. The triggering mechanism is a programmable pattern
matcher module with mask that can be modified while the system is online.

Authors in [17] presented an approach to provide a robust solution by remodeling NetF-
PGA reference architecture for deep packet inspection such that the packet processing delay
is highly negligible. It is discussed the respective implementation of devising high speed
FSMs in a pipelined architecture that has been validated for maintaining throughput of
1 Gbps with a set of SNORT based signatures. Besides that, authors in [18] presented a
compact implementation for on-line traffic change detection on a NetFPGA platform as
sketch-based algorithms are widely applied in various networking applications.

Authors in [16] proposed a Layer 2 congestion control mechanism for high-speed data
center networks and a prototyping this mechanism on NetFPGA.

Finally, [7] describes an implementation of a high-speed firewall on NetFPGA, in which
the authors changed the output port lookup in order to read the packets content and analyze
it.

4

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

124

RonCay
Rectangle



3: The proposed architecture

As mentioned above, we have been working within the NetFPGA Reference Router
project [3] extending its design. It consists of a set of Verilog modules working in pipeline.
The main component is the User Data Path: this module takes its inputs from the the input
queues and sends its output to the output queues1. Its primary function is to elaborate the
incoming packets and decide what to route in each of the output port. In order to achieve
this, the User Data Path is composed of three main sub-modules:

1. the Input Arbiter module, which takes the network packets from the input queues;

2. the Output Port Lookup module, which processes the network packets based on the
information contained in the routing table;

3. the Output Queues module, which routes network packets in the correct output queue,
based on the decision of the Output Port Lookup module.

Figure 1. Architecture pipeline of the extended Reference Router.

As far as the pipeline is concerned, the network packets are forwarded from module to
module according to predefined schedules. Each module performs some tasks on the packets
and then forward them during predefined time frames. New modules may be developed
and located in the original pipeline. In our work, we have extended the standard Reference
Router architecture, including three new hardware modules in order to compute the input
and output bit rate and the ewma bit rate. Moreover, we have improved and generalized

1Along this paper we will refer to the input queues as Rx queues and to the output queues as Tx queues

5

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

125

RonCay
Rectangle



an existing module which limits the output bit rate according to user specific values. In
particular, we have first analyzed the whole Reference design [5] in order to localize the
signals that we were interested for our purposes. Then, we were able to modify the original
design in order to feed those signals to the User Data Path module. Then, it was easy to
capture these signals from the new developed modules within the User Data Path. Figure 1
shows an architecture of the extended Reference Router. The lighter gray boxes indicate
the new modules whereas the dark gray boxes refer to the original design.

Sections 3.1, 3.2, 3.3 and 3.4 describe, respectively, the Input Bit Rate Calculator module,
the Output Bit Rate Calculator module, the EWMA Bit Rate Calculator module, and the
extended Rate Limiter module.

3.1 Input Bit Rate Calculator

The Input Bit Rate Calculator is a hardware module that provides the input bit rate
which is received within the input queues from the Ethernet ports. In particular, this
module computes two things:

1. the input bit rate in each queue,

2. the overall bit rate (summing up the four input bit rates).

The reader notices that information needed to compute the input bit rate is already
available within the NetFPGA registers. In particular, the number of bytes received in each
input queue is accessible through the MAC GRP i RX QUEUE NUM BYTES PUSHED-
REG register (where i ranges in {0, . . . , 3} as we have four input queues). Each of the

four registers contains the progressive number of bytes received in the corresponding input
queue. Each register has a fixed dimension of 32 bits: when the value of the register reaches
the maximum it restarts from 0. In order to compute the bit rate for the input queue i we
need to read the value of the ith register each time window w and convert the number of
received bytes within w in a bit rate value.

The rationale behind this is the following: when the NetFPGA works at 125 MHz, each
clock cycle lasts 8 ns. If ri1 and ri2 are the two values read from the MAC GRP i RX QUE-
UE NUM BYTES PUSHED REG register, respectively, before and after w, the obtained
bit rate for the queue i is equal to:

bitratei = (ri2 − ri1) · w
109
· 1

Vfreq
(1)

where Vfreq is equal to 1 if the current clock frequency is 125 MHz and 2 if it is 62.5 MHz
(when the NetFPGA works at 62.5 MHz the clock cycle becomes 16 ns). The user notices
that the lower w, the higher the sampling frequency that we can calculate; conversely, the
higher w, the lower the resolution. Thus, according to the specific application or domain
where our project will be run, it is possible to give higher importance to the sampling
frequency rather than the resolution or vice-versa. This is accomplished by properly setting
the value of the CYCLE register that we have introduced within the Register System.
Table 1 shows the values taken into account for the CYCLE register, the related time w,
and the minimum supported bit rate for each queue that can be captured. Therefore, if
our application needs a higher sampling rate then we should use lower values of CYCLE
as long as the current bit rate is supported. Thus, if for example the observed bit rate is

6

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

126

RonCay
Rectangle



CYCLE register w (ns) Minimum
bit rate (kbps)

1 8 · 10 106

2 8 · 102 105

3 8 · 103 104

4 8 · 104 103

5 8 · 105 102

6 8 · 106 10

Table 1. Minimum supported bit rate in kbps for each value of the CYCLE register
and corresponding time w.

Register name Description
CYCLE Input register containing the

time information for sampling
Q0 BITRATE Output register containing bit rate for queue 0
Q1 BITRATE Output register containing bit rate for queue 1
Q2 BITRATE Output register containing bit rate for queue 2
Q3 BITRATE Output register containing bit rate for queue 3

TOTAL BITRATE Output register containing the total bit rate

Table 2. New registers defined within the Input Bit Rate Calculator module.

lower than 1000 kbps and we want the highest sampling rate able to capture the bit rate,
we need to use a value for CYCLE equal to 5.

Besides the CYCLE register, we have defined within the Register System five more
registers (Table 2 lists them all) which store the resulting bit rate. In particular, we store
the input bit rate of each single queue and the overall input bit rate of the router. Clearly,
these registers may be read from any software module.

As far as the existing Verilog modules are concerned, we have slightly changed the
nf2 core.v, mac grp regs.v, and nf2 mac grp.v modules in order to forward the reg file[′MAC -
GRP RX QUEUE NUM BY TES PUSHED′] signal to the User Data Path module.
This signal has the same value corresponding to the MAC GRP i RX QUEUE NUM BYTES PUSHED REG
registers for i = {0, . . . , 3}. It counts the number of bytes that have been sent into the Rx
queues. Within the User Data Path we have defined our Input Bit Rate Calculator which
takes as input the signal indicated above.

The bit rate computation takes as input this signal for each queue and it is implemented
by the state machine shown in Fig. 2. The state machine initially idles in the Increment
state waiting for the amount of cycles corresponding to w (which depends on the CYCLE
register value). When w expires it computes the bit rate for each input queue using Equation
(1). The next state is Computation which calculates the overall bit rate. Finally, the last
state is Update which stores in local variables the value of each MAC GRP i RX QUE-
UE NUM BYTES PUSHED REG registers, for i = {0, . . . , 3}. We let the reader notes
that we have distributed the computation along three different states for time constraints
purposes.

7

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

127

RonCay
Rectangle

RonCay
Rectangle



Figure 2. Diagram of state machine for the Input Bit Rate Calculator module.

3.2 Output Bit Rate Calculator

Similarly to the Input Bit Rate Calculator module, the Output Bitrate Calculator is
a hardware module that provides the output bit rate for each Tx queue and the overall
output bit rate as well. The same concepts and formulas discussed in Section 3.1 apply
even in this case. Moreover, the same number of registers have been defined for the output
bit rate and have a similar purpose as the ones in 3.1.

The Output Bit Rate Calculator module receives a signal from each of the MAC out-
put queues. This signal has the same value corresponding to the MAC GRP i TX QUE-
UE NUM BYTES PUSHED REG registers for i = {0, . . . , 3}. It counts the number of
bytes that have been sent out of the Tx queues to Ethernet.

We have slightly changed the nf2 core.v, mac grp regs.v, and nf2 mac grp.v modules
in order to forward the reg file[′MAC GRP TX QUEUE NUM BY TES PUSHED′]
signal to the User Data Path module. Therefore, defining the Output Bit Rate Calculator
module within the User Data Path allowed us to capture the signals above and process
them. Then we have proceeded analogously to Section 3.1 using a similar state machine
architecture.

3.3 Bit Rate EWMA Calculator

An exponential moving average (EMA), also known as an exponentially weighted mov-
ing average (EWMA), is a type of infinite impulse response filter that applies weighting
factors which decrease exponentially. The weighting for each older data point decreases
exponentially, never reaching zero. The formula that has been taken into account for the
development of an EWMA module of the input bit rate is the following:

ewma bit raten = α× bit raten + (1− α)× ewma bit raten−1 (2)

where

• the coefficient α represents the degree of weighting decrease, a constant smoothing
factor between 0 and 1. A higher α discounts older observations faster;

8

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

128

RonCay
Rectangle



ALPHA register α 1-α operation
0 1 0 bit raten
1 0.125 0.875 (bit raten >> 3) +

((ewma bit raten−1 >> 3) × 7)
2 0.25 0.75 (bit raten >> 2) +

((ewma bit raten−1 >> 2) × 3)
3 0.375 0.625 ((bit raten >> 3) × 3) +

((ewma bit raten−1 >> 3) × 5)
4 0.5 0.5 (bit raten >> 1) +

(ewma bit raten−1 >> 1)
5 0.625 0.375 ((bitraten >> 3) × 5) +

((ewma bit raten−1 >> 3) × 3)
6 0.75 0.25 ((bitraten >> 2) × 3) +

(ewma bit raten−1 >> 2)
7 0.875 0.125 ((bit raten >> 3) × 7) +

(ewma bit raten−1 >> 3)

Table 3. Values for the ALPHA register and corresponding operations of the second
member of Equation 2.

• bit raten is the observation (overall bit rate) at a time period n; this value is forwarded
by the Input Bit Rate Calculator described above;

• ewma bit raten−1 is the value of the EWMA bit rate at a time period n− 1.

We have introduced a new register, called ALPHA, which stores the value for α chosen
by the user. The Bit Rate EWMA Calculator module gets an input signal from the Input
Bit Rate Calculator module which corresponds to the overall input bit rate.

As far as the calculation of the Equation 2 is concerned, the reader notices that the
α parameter could get any decimal value in the range [0,1]. Taking into account all the
possible values in that range would have meant to complicate a lot the logic and therefore
the performances of the module as floating point numbers multiplication is not standard in
Verilog and requires very high CPU computational power. For such a reason, we have sim-
plified the EWMA formula of Equation 2 by using right shift and multiplication operators
instead of the regular division. On the one hand, proceeding like that, we could consider
only a finite number of values for α; on the other hand, these values range from 0 to 1
in steps of 0.125 and give enough choice to the user for the EWMA calculation. Table 3
shows the value of the ALPHA register and the corresponding values for α, 1− α, and the
Equation 2 with only right shifts and multiplications.

3.4 Extended Rate Limiter

The NetFPGA V2.0 platform contains a rate limiter module for the second MAC Tx
queue only. This module allows us to limit the output bit rate of the second MAC Tx queue
according to 16 values (from 244 kbps to 1Gbps) written into one ad-hoc hardware register.
In particular, within the rate limiter module, eight registers have been introduced (two per
each output queue): RATE LIMIT i ENABLE REG and RATE LIMIT i SHIFT REG for
i ranging in {0, . . . , 3}. The former contains a boolean value indicating that the rate limiter
is either enabled or disabled whereas the latter contains a value which limits the correspond-
ing output queue bit rate. We have slightly changed the rate limiter.v, rate limiter regs.v
and user data path.v files in order to take into account 32768 fine-grained values of the bit

9

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

129

RonCay
Rectangle



rate2 (and not just 16) and to provide each output queue (not the second queue only) with
such a rate limiter functionalities. Of course, we have also changed the java-based graphical
user interface released together with the NetFPGA platform in order to take into account
the 32768 bit rate levels. This allowed us to limit the output bit rate of each queue and try
different settings in order to create the same conditions that occur during a congestion.

4: Experimentation

The experimentations we have carried out have been performed using two NetFPGA
hosts systems. One of them (NetFPGAbit rate calc) was loaded with the project we propose
in this paper whereas the other (NetFPGApkt gen) was loaded with the Packet Generator
project [10]. The packet generator application allows Internet packets to be transmitted at
line rate on up to four Gigabit Ethernet ports simultaneously. Data transmitted is specified
in a standard PCAP file, transferred to local memory on the NetFPGA card, then sent on
the Gigabit links using a precise data rate, inter-packet delay, and number of iterations
specified by the user. Figure 3 shows the adopted topology.

Figure 3. Topology used for the experimentation results. Network packets are
sent from NetFPGApkt gen to NetFPGAbit rate calc where they are sent back to
NetFPGApkt gen.

The four ports of the two NetFPGA boards were connected each other. Therefore, using
the Packet Generator we sent network packets out of the four ports of NetFPGApkt gen to
NetFPGAbit rate calc. The packets received within NetFPGAbit rate calc were sent back again
to NetFPGApkt gen in order to calculate the output bit rate value from NetFPGAbit rate. In
order to send the packets from NetFPGApkt gen we had to carefully prepare the PCAP files
by choosing appropriate IP and MAC addresses, and IP and MAC checksums. Moreover
we had to appropriately set the MAC addresses of the Ethernet ports and IP addresses
of NetFPGApkt gen. In NetFPGAbit rate calc the configuration has been set up running the
SCONE3 software.

Finally, playing with the rate limiter on each of the output queues we could observe
the behavior of our developed modules as far as the input bit rate and the output bit
rate are concerned. In particular, we have developed a bash script which sends network

2It was enough to replace within the rate limiter.v Verilog file a shift operation with a multiplication.
3The router SCONE is a user level router that performs IPv4 forwarding, handles ARPs and various

ICMP messages

10

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

130

RonCay
Rectangle



packets from NetFPGApkt gen with an average rate of 2 Gbps; moreover we have written a
C program which runs every 1000 ms within the NetFPGAbit rate calc and increases the rate
limiter value of each output queue of a fixed amount. Clearly, the input bit rate read using
our module had to be equal to that sent out from NetFPGApkt gen whereas the output
bit rate value was lower according to what we fixed within the rate limiter of each queue.
Figure 4 shows how the input and output bit rate values read using our modules changed
according to the initial bit rate set within the NetFPGApkt gen and the values in the rate
limiter module. At instant 0 the initial bit rate sent out from NetFPGApkt gen was set to
about 2 Gbps and the rate limiter of each queue was set to 406.25 Mbps. Then, after each
1000 milliseconds, the rate limiter of each queue was incremented by 15.62 Mbps. After
6000 milliseconds, the rate limiter was set to 500 Mbps. Thus, as within the same interval
time the input bit rate reached a value slightly lower than 2 Gbps (the maximum value
which could be read by all the output queues each having the current rate limiter set to 500
Mbps), the output queues were able to read the entire bit rate; therefore the two curves in
the figure overlap. The user notices that when the rate limiter value was changed, the time
needed to make the change effective was about 500 µs which corresponds to 0.5 ms. That
explains the vertical lines in the figure.

0 1000 2000 3000 4000 5000 6000 7000 8000
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

9

Time (ms)

B
it
 r

a
te

 (
b

p
s
)

 

 

Input bit rate

Output bit rate

Figure 4. Variations of the output bit rate with respect to the input bit rate according
to progressive values of rate limiter for each queue.

5: Device Utilization

The device utilization of the hardware component of our modules is almost identical to
that of the Reference Router design and is displayed in Table 4.

6: Conclusions and Future Work

Our modules are implemented on the NetFPGA platform and they perform input, out-
put and ewma bit rate computation. We have shown how our modules are effective with

11

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

131

RonCay
Rectangle



Resources XC2VP50 Utilization
Utilization Percentage

Slices 14.160 59%
4-input LUT 19.503 41%

Flip Flops 12.387 26%
Block RAMs 27 11%

External IOBs 360 52%

Table 4. Device utilization for our modules.

simple tests. The implementation process of our modules were simplified by the pipelined
architecture of the Reference Router. Furthermore, by reusing the Reference Router design,
the development time of our modules was greatly reduced as we did not have to start from
scratch. Our code has been released, following the guidelines in [9], to the larger community
for re-use, feedback, and enhancement. The wiki entry of the project can be seen at [6].

7: Acknowledgement

The work described in this paper was performed with the support of the ECONET
project (low Energy COnsumption NETworks), funded by the EU through the FP7 call.

References

[1] NetFPGA Team. NetFPGA website. http://netfpga.org.

[2] NetFPGA Projects . http://netfpga.org/ foswiki/bin/view/ NetFPGA/OneGig/ Pro-
jectTable.

[3] NetFPGA Reference Router project. http://netfpga.org/ foswiki/bin/view/NetFPGA/
OneGig/ReferenceRouterWalkthrough.

[4] NetFPGA Register System. http://netfpga.org/ foswiki/ bin/view/NetFPGA/
OneGig/RegisterSystem.

[5] NetFPGA Walkthrough the Reference Design. http://netfpga.org/ foswiki/bin/view/
NetFPGA/OneGig/ Guide#Walkthrough the Reference Design.

[6] NetFPGA Projects . http://netfpga.org/ foswiki/bin/view/ NetFPGA/OneGig/ In-
putOutputEwmaBitrate.

[7] Mou-Sen Chen, Ming-Yi Liao, Pang-Wei Tsai, Mon-Yen Luo, Chu-Sing Yang, and
C. Eugene Yeh. Using netfpga to offload linux netfilter firewall. In 2nd North American
NetFPGA Developers Workshop; Stanford, CA; August 13, 2010.

[8] Michael Ciesla, Vijay Sivaraman, and A. Seneviratne. Url extraction on the netfpga
reference router. Developers Workshop 2009, 2009.

[9] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N. McKeown. Encouraging
reusable network hardware design. IEEE International Conference on Microelectronics
System Education (MSE), San Francisco, CA, 2009.

[10] G. Adam Covington, Glenn Gibb, John W. Lockwood, and Nick Mckeown. A packet
generator on the netfpga platform. In Proceedings of the 2009 17th IEEE Symposium on

12

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

132

RonCay
Rectangle



Field Programmable Custom Computing Machines, FCCM ’09, pages 235–238, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[11] Glen Gibb, John W. Lockwood, Jad Naous, Paul Hartke, and Nick McKeown. Netfpga.
an open platform for teaching how to build gigabit-rate network switches and routers.
IEEE Transactions on Education, 2008.

[12] Andrew Goodney, Shailesh Narayan, Mengchen Wang, Peigen Sun, Vivek Bhand-
walkar, and Young H. Cho. Netfpga logic analyzer. In 2nd North American NetFPGA
Developers Workshop; Stanford, CA; August 13, 2010.

[13] Adwait Gupte and John Lockwood. Precise latency comparison module for the netfpga.
In 2nd North American NetFPGA Developers Workshop; Stanford, CA; August 13,
2010.

[14] Y.S. Hanay, A. Dwaraki, and T. Wolf. High-performance implementation of in-network
traffic pacing. In High Performance Switching and Routing (HPSR), 2011 IEEE 12th
International Conference, pages 9–15, 2011.

[15] Jinghe Jin, Nazarov Nodir, Chaetae Im, and Seung Yeob Nam. Mitigating http get
flooding attacks through modified netfpga reference router. In 1st Asia NetFPGA
Developers Workshop; Daejeon, Korea; June 14, 2010.

[16] Abdul Kabbani and Masato Yasuda. Data center quantized congestion notification
(qcn): Implementation and evaluation on netfpga. In 1st Asia NetFPGA Developers
Workshop; Daejeon, Korea; June 14, 2010.

[17] Bokil Kanchan. Remodeling the netfpga architecture for content processing and filter-
ing. In Developers Workshop; Stanford, CA; August 13, 2010.

[18] Yu-Kuen Lai, Nan-Cheng Wang, Tze-Yu Chou, Chun-Chieh Lee, Theophilus Wellem,
and Hargyo Tri Nugroho. Implementing on-line sketch-based change detection on a
netfpga platform. In 1st Asia NetFPGA Developers Workshop; Daejeon, Korea; June
14, 2010.

[19] J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R. Raghura-
man, and J. Luo. Netfpga - an open platform for gigabit-rate network switching and
routing. In In International Conference on Microelectronic Systems Education, 2007.

[20] Alfio Lombardo, Carla Panarello, Diego Reforgiato, Enrico Santagati, and Giovanni
Schembra. A module for packet hijacking in netfpga platform. In Proceedings of the
2011 14th Euromicro Conference on Digital System Design, DSD ’11, pages 283–286,
Washington, DC, USA, 2011. IEEE Computer Society.

[21] Alfio Lombardo, Diego Reforgiato, and Giovanni Schembra. An accelerated and energy-
efficient traffic monitor using the netfpga (abstract only). In Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate arrays, FPGA ’11,
pages 277–277, New York, NY, USA, 2011. ACM.

[22] Danilo Misovic, Nikola Ljumovic, Milutin Radonjic, and Igor Radusinovic. Implemen-
tation of the crosspoint-queued switch’s output controller on the netfpga platform. In
Proceedings of ELMAR 2011, ELMAR ’11, pages 235–2238, 2011.

[23] Hamed Tabatabaei and Yashar Ganjali. Preserving pacing in real networks - an exper-
imental study using netfpga. In 2nd North American NetFPGA Developers Workshop;
Stanford, CA; August 13, 2010.

[24] Minglong Zhang, Hui Li, Fuxing Chen, Hanxu Hou, Huiyao An, Wei Wang, and Jiaqing

13

International Journal of Future Generation Communication and Networking 
                                                                     Vol. 5, No. 2, June, 2012

133

RonCay
Rectangle



Huang. A general co/decoder of network coding in hdl. In Network Coding (NetCod),
2011 International Symposium, pages 1–5, 2011.

14

International Journal of Future Generation Communication and Networking 
Vol. 5, No. 2, June, 2012

134

RonCay
Rectangle




