61 research outputs found

    The Interface Between Wheat and the Wheat Curl Mite, \u3ci\u3eAceria tosichella\u3c/i\u3e, the Primary Vector of Globally Important Viral Diseases

    Get PDF
    Wheat production and sustainability are steadily threatened by pests and pathogens in both wealthy and developing countries. This review is focused on the wheat curl mite (WCM), Aceria tosichella, and its relationship with wheat. WCM is a major pest of wheat and other cereals and a vector of at least four damaging plant viruses (Wheat streak mosaic virus, High plains wheat mosaic virus, Brome streak mosaic virus, and Triticum mosaic virus). The WCM–virus pathosystem causes considerable yield losses worldwide and its severity increases significantly when mixed-virus infections occur. Chemical control strategies are largely ineffective because WCM occupies secluded niches on the plant, e.g., leaf sheaths or curled leaves in the whorl. The challenge of effectively managing this pest–virus complex is exacerbated by the existence of divergent WCM lineages that differ in host-colonization and virus-transmission abilities. We highlight research progress in mite ecology and virus epidemiology that affect management and development of cereal cultivars with WCM- and virus-resistance genes. We also address the challenge of avoiding both agronomically deleterious side effects and selection for field populations of WCM that can overcome these resistance genes. This report integrates the current state of knowledge of WCM–virus-plant interactions and addresses knowledge gaps regarding the mechanisms driving WCM infestation, viral epidemics, and plant responses. We discuss the potential application of molecular methods (e.g., transcriptomics, epigenetics, and whole-genome sequencing) to understand the chemical and cellular interface between the wheat plant and WCM–virus complexes

    Change in abundance of three phytophagous mite species (Acari : Eriophyidae, Tetranychidae) on quackgrass in the presence of choke disease

    Get PDF
    Phytophagous mites and endophytic fungi may interact when sharing a host plant, potentially influencing one another’s growth or population dynamics; however, interactions between them are poorly known and remain largely unexplored. In this study, quantitative associations between three species of phytophagous mites and the endophytic fungus Epichloë bromicola Leuchtm. & Schardl (Clavicipitaceae, Ascomycotina) on quackgrass, Elymus repens (L.) Gould are reported. The mites’ abundance was assessed on field-collected grass shoots that were either exhibiting choke disease symptoms or without the fungus. Overall, the abundance of Tetranychus urticae and Aculodes mckenziei was significantly lower on quackgrass plants infected by E. bromicola compared to plants without the fungus. Conversely, populations of Abacarus hystrix were significantly larger on plants colonised by the fungus than on uninfected plants. Thus, the presence of this endophytic fungus may have divergent effects on different phytophagous mite species although the basis of these effects is not yet known

    Population growth rate of dry bulb mite, Aceria tulipae (Acariformes: Eriophyidae), on agriculturally important plants and implications for its taxonomic status

    Get PDF
    Dry bulb mite (DBM), Aceria tulipae, is an economically important mite with a worldwide distribution and a broad host range. As a generalist, it is the most important eriophyoid mite attacking bulbous plants such as garlic, onion and tulip. To date, DBM has been recorded on host plants belonging to the families Liliaceae, Amaryllidaceae, Melanthiaceae and Asparagaceae. However, a precise understanding of DBM host range is lacking as it is largely based on casual records of mites on plants, some of which may include accidental hosts. Moreover, the possible existence of cryptic species has not been considered. In this study the hypothesis that DBM may be a complex of distinct genetic lineages or cryptic species was tested by comparing the common barcode sequence marker mtDNA COI of specimens from several populations originating from the Netherlands and Poland. The population growth rate of DBM on seven agriculturally important plant species and on various parts of the garlic plant was also experimentally assessed in the laboratory. The results did not support the first hypothesis, and indicated that DBM populations originating from Poland and the Netherlands shared essentially the same genome. In addition, they indicated that DBM reached the highest population growth rate on leek and also displayed high growth rates on garlic, chive and red onion, whereas white onion and wheat were not colonized by the mites. Answering the question of whether DBM is a single polyphagous species rather than a complex of cryptic lineages is of particular importance since the misidentification of pests may lead to ineffective control strategies. Moreover, improved knowledge of DBM host range is essential for assessing risk to crops

    The Interface Between Wheat and the Wheat Curl Mite, Aceria tosichella, the Primary Vector of Globally Important Viral Diseases

    Get PDF
    Wheat production and sustainability are steadily threatened by pests and pathogens in both wealthy and developing countries. This review is focused on the wheat curl mite (WCM), Aceria tosichella, and its relationship with wheat. WCM is a major pest of wheat and other cereals and a vector of at least four damaging plant viruses (Wheat streak mosaic virus, High plains wheat mosaic virus, Brome streak mosaic virus, and Triticum mosaic virus). The WCM–virus pathosystem causes considerable yield losses worldwide and its severity increases significantly when mixed-virus infections occur. Chemical control strategies are largely ineffective because WCM occupies secluded niches on the plant, e.g., leaf sheaths or curled leaves in the whorl. The challenge of effectively managing this pest–virus complex is exacerbated by the existence of divergent WCM lineages that differ in host-colonization and virus-transmission abilities. We highlight research progress in mite ecology and virus epidemiology that affect management and development of cereal cultivars with WCM- and virus-resistance genes. We also address the challenge of avoiding both agronomically deleterious side effects and selection for field populations of WCM that can overcome these resistance genes. This report integrates the current state of knowledge of WCM–virus-plant interactions and addresses knowledge gaps regarding the mechanisms driving WCM infestation, viral epidemics, and plant responses. We discuss the potential application of molecular methods (e.g., transcriptomics, epigenetics, and whole-genome sequencing) to understand the chemical and cellular interface between the wheat plant and WCM–virus complexes

    A New Metaculus Species (Acari: Eriophyoidea) on Diplotaxis tenuifolia (Brassicaceae) From Serbia: A Combined Description Using Morphology and DNA Barcode Data

    Get PDF
    A new species of eriophyoid mite, Metaculus diplotaxi n. sp. inhabiting Diplotaxis tenuifolia ( L.) DC., is described from Serbia. To investigate interspecific variability between Metaculus spp. on three different Brassicaceae host plants ( viz. D. tenuifolia, Lepidium latifolium ( L.), Isatis tinctoria ( L.)), we analyzed phenotypic variability of morphological traits and molecular sequences of the mitochondrial cytochrome oxidase subunit I ( MT- CO1). Discriminant analysis identified seven traits that significantly differentiate three Metaculus spp: M. lepidifolii, M. rapistri, and M. diplotaxi n. sp. Analysis of MT- CO1 sequences supported the results obtained from the analysis of morphometric features

    A new Aculodes species (Prostigmata: Eriophyoidea: Eriophyidae) associated with medusahead, Taeniatherum caput-medusae (L.) Nevski (Poaceae)

    Get PDF
    A new species of plant mite (Acari: Eriophyidae) was discovered on medusahead (Taeniatherum caputmedusae), an annual grass that is native to central Asia and the Mediterranean Basin. It is invasive in western North America. Aculodes altamurgiensis sp. nov., is described here and differentiated from other Aculodes spp., on the basis of morphology. Its DNA fingerprinting was reported and compared with Aculodes mckenziei collected from Elymus repens and Bromus inermis. Pairwise comparison of MT-001 sequences between A. altamurgiensis sp. nov., and A. mckenziei revealed 20.2-21.5% genetic divergence between these congeneric species. First collected in Parco Nazionale dell'Alta Murgia in Apulia, Italy in 2014,A. altamurgiensis sp. nov., has been subsequently collected from medusahead in Serbia, Bulgaria, Iran and Turkey. Based on these data and on preliminary observations on the effects of the mite on plant growth, A. altamurgiensis sp. nov., is currently being investigated as a candidate biological control agent of medusahead

    Agricultural Research Service Weed Science Research: Past, Present, and Future

    Get PDF
    The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being

    Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?

    Full text link
    • …
    corecore