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Abstract Phytophagous mites and endophytic fungi may interact when sharing a host

plant, potentially influencing one another’s growth or population dynamics; however,

interactions between them are poorly known and remain largely unexplored. In this study,

quantitative associations between three species of phytophagous mites and the endophytic

fungus Epichloë bromicola Leuchtm. & Schardl (Clavicipitaceae, Ascomycotina) on

quackgrass, Elymus repens (L.) Gould are reported. The mites’ abundance was assessed on

field-collected grass shoots that were either exhibiting choke disease symptoms or without

the fungus. Overall, the abundance of Tetranychus urticae and Aculodes mckenziei was

significantly lower on quackgrass plants infected by E. bromicola compared to plants

without the fungus. Conversely, populations of Abacarus hystrix were significantly larger

on plants colonised by the fungus than on uninfected plants. Thus, the presence of this

endophytic fungus may have divergent effects on different phytophagous mite species

although the basis of these effects is not yet known.
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Introduction

Spider mites (Tetranychidae) and eriophyoid mites (Eriophyoidea) are considered the most

economically important taxa of all plant-feeding mites (Hoy 2011). Tetranychids typically

have wide host ranges (Bolland et al. 1998), whereas the majority of eriophyoids are highly

host specific (Skoracka et al. 2010). Tetranychidae are considered major plant pests

worldwide, attacking food crops, trees, and ornamentals, causing serious yield losses. The

most notorious pest species is the two-spotted spider mite, Tetranychus urticae Koch.,

which has a worldwide distribution and a wide host range (Bolland et al. 1998; Migeon and

Dorkeld 2006–2011; Hoy 2011). Many of eriophyoids are also significant crop pests, some

of which represent quarantine threats to numerous countries due to their direct feeding

damage as well as transmission of plant diseases by some species (e.g. Duso et al. 2010;

Navia et al. 2010).

Endophytic fungi are virtually ubiquitous symbionts living within plant tissues

(Saikkonen et al. 2004; Cheplick and Faeth 2009; Rodriguez et al. 2009) that may

protect their host plants either directly, e.g. through production of alkaloids that make

them toxic or less palatable to herbivores (e.g. Bacon 1995; Elliot et al. 2000; Czar-

noleski et al. 2012; Garcı́a Parisi et al. 2014), or indirectly, e.g. by enhancing detection

of mite (Schausberger et al. 2012) and even mammalian herbivores (Huitu et al. 2008)

by predators. Alkaloids associated with the presence of endophytic fungi in grasses may

reduce damage by herbivorous insects (Potter et al. 2008), via reduced feeding, ovipo-

sition (Rowan et al. 1990) or overall insect performance (Breen 1994; Clay and Schardl

2002). Not all endophytic fungi are known to benefit their hosts. For example, many

epichloae (i.e. Epichloë and Neotyphodium species; Clavicipitaceae) are endophytes that

produce no symptoms and are transmitted vertically through host lineages (i.e. via host

seeds) without reproducing sexually themselves (Brem and Leuchtmann 2003; Schardl

et al. 2013). However, some Epichloë spp., cause ‘‘choke disease’’, whereby they pro-

duce fruiting bodies (stromata) containing sexually reproductive spores and prevent

flower and seed development in their hosts (Fig. 1). This disease is a significant threat to

some economically important grasses (Western and Cavett 1959; Siegel et al. 1987;

Brem and Leuchtmann 2003).

Although we know much about interactions of plant-symbiotic fungi with insects

(e.g. Rowan et al. 1990; Breen 1994; Elliot et al. 2000; Clay and Schardl 2002; Potter

et al. 2008; Garcı́a Parisi et al. 2014), effects of these symbionts on mite herbivores

have largely focused on interactions between root-associated microorganisms and the

cosmopolitan pest, T. urticae (reviewed by Hoffmann and Schausberger 2012). For

example, Zhang et al. (2012) demonstrated that the endophyte Neotyphodium gansuense

Li & Nan, which is associated with drunken horse grass, Achnatherum inebrians

(Hance) Keng, reduced both feeding and survival of the spider mite Tetranychus urticae

Koch.

The endophyte Epichloë bromicola Leuchtm. & Schardl has been recorded from

numerous grass species and is known to produce choke disease in several of them (Brem

and Leuchtmann 2003; Song and Nan 2015). The purpose of this study was to report

quantitative and descriptive associations between choke-producing Ep. bromicola and the

phytophagous mites Abacarus hystrix (Nal.), Aculodes mckenziei (Keif.) (both Eriophyi-

dae) and T. urticae (Tetranychidae) on their shared host quackgrass, Elymus repens (L.)

Gould.
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Materials and methods

The study plant, quackgrass (El. repens), is native to Europe and Asia. In Poland it is a

common weed of field crops (Zając and Zając 2001). In May 2008, signs of the fungus Ep.

bromicola were observed on the shoots of El. repens at two localities in Poland (Lembicz

et al. 2010). In 2011, shoots of El. repens, with and without visible stromata of Ep.

bromicola were collected from distinct clusters of El. repens shoots along four transects at

three sites in Poland (Table 1). Each transect was 15 m long and 1 m wide. One shoot with

and one shoot without stromata were collected from within each 1 9 1 m square along the

length of each transect. If there was no El. repens in a given square, no shoots were

collected in that square. Plant shoots were placed separately in plastic bags inside a cooler.

Each collected shoot, whether with or without visible signs of choke disease, was checked

for the presence of the endophytic form of the fungus, which is evident from hyphae in

intercellular spaces that stain dark blue with aniline blue dye. Specimens were analysed

using a light microscope. The fungus on collected shoots was identified as Ep. bromicola,

based on matching of nucleotide sequences of tubB introns (GenBank Accession No.

DQ267692). Molecular identification followed the procedures of Brem and Leuchtmann

(2003) and Lembicz et al. (2010). Each shoot designated as being without stromata was

further tested for the presence of the asexual, asymptomatic stage of the fungus with

aniline blue staining of leaf sheath epidermis and observations under a light microscope.

For each collected shoot, the length and the number of leaves were recorded and these

measures were used to estimate the relative sizes of the plants (see below). The shoots were

also examined under a stereo-microscope (Olympus SZX16) to detect mites. Mites were

counted and were subsequently mounted on slides in Heinze medium (Heinze 1952; de

Lillo et al. 2010). Mites were then identified to species (Manson 1967; Baker and Tuttle

1994; Skoracka 2004, 2009) using an Olympus BX41 phase-contrast light microscope.

Fig. 1 Fertilized stromata of
Epichlo/ bromicola on infected
stems of quackgrass (Elymus
repens). phot. M. Lembicz
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Data analysis

Before statistical analysis the data on shoot length and number of leaves per shoot were

log10-transformed and a Principal Components Analysis was performed on these values.

We used the scores of the first principal component as our integrated measure of plant size.

To examine links between endophyte presence and abundance of mites on quackgrass, a

Generalized Linear Model (GLM) was employed for the number of mites on plant shoots,

assuming Poisson distribution and a log-link function. A separate analysis was performed

for each mite species and each model included infection status and study location as

grouping variables. Larger plants were expected to harbor larger numbers of mites. To

eliminate this bias caused by a simple scaling effect, our models considered the index of

plant size as a numerical covariate. Thus, comparisons between our study groups were

made for plants adjusted to the mean plant size. The analyses were performed using

Statistica 10 (StatSoft, Poland).

Results

Three species of mites were collected from the El. repens shoots: the polyphagous spider

mite T. urticae (Tetranychidae) and two plant mites that are commonly found on grasses,

Ab. hystrix and Ac. mackenziei (both Eriophyidae). The most numerous species was Ab.

hystrix, followed by T. urticae, whereas Ac. mackenziei was found in very small numbers

(Table 1).

Table 1 Characteristics of the sampled sites. Please note that the raw data on the abundance of mites are
not adjusted by differences in plant size

Site
name

GPS
coordinates

Epichloë
presence

No. of shoots
sampled

No. of shoots with Mean no. of mites per
shoot

ABH ACM TEU ABH ACM TEU

Dulsk 1
(D1)

N 52� 450

23.4200
No 10 9 1 1 13.7 0.8 1.3

E 18� 210

22.0300
Yes 11 11 1 4 42.2 0.1 1.1

Dulsk 2
(D2)

N 52�
45011.3200

No 11 9 4 11 17.6 22.8 184.9

E 18�
19035.2700

Yes 12 5 0 6 2.5 0 32.6

Jacewo
(J)

N 52� 480

02.8800
No 13 12 3 5 9.6 2.6 2.1

E 18� 170

50.7800
Yes 12 8 0 7 5.7 0 4.5

Pakość
(P)

N 52� 480

06.2300
No 11 7 0 2 36.5 0 1.3

E 18� 050

07.7600
Yes 17 13 0 6 32.0 0 9.8

ABH Abacarus hystrix, ACM Aculodes mackenziei, TEU Tetranychus urticae
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The PCA of leaf number and shoot length showed that both parameters were highly

positively correlated and they formed the first principal component (i.e. our index of plant

size in subsequent analyses), explaining 92 % of the variation in the data (loadings of both

parameters were equal to 0.96).

As predicted, results of the GLM (Table 2) indicated that larger plants harboured more

mites. After accounting for this scaling effect, we found that T. urticae and Ac. mckenziei

were most abundant on endophyte-free plants, in contrast to Ab. hystrix, which was found

in the highest numbers on endophyte-infected plants (Fig. 2a). The abundance of mites

also differed between the study sites; T. urticae and Ac. mckenziei were most abundant at

the Dulsk 2 (D2) site; whereas Ab. hystrix reached the highest numbers in Pakość (P) and

both Dulsk (D1 and D2) sites (Fig. 2b).

Discussion

Our comparative study revealed a complex pattern in the co-occurrence of phytophagous

mites and an endophytic fungus on quackgrass. The mites T. urticae and Ac. mckenziei

were most abundant on endophyte-free plants, which was consistent with our expectations

that the presence of endophyte can result in lower pressure of phytohagous mites on grass.

At the same time we found more mites of Ab. hystrix on endophyte-infected plants, which

was contrary to our hypothesis. This suggests that the presence of an endophyte, in this

case the sexual form of E. bromicola may have contrasting effects on different species of

phytophagous mites feeding on the diseased host plant. Such divergent effects have also

been observed in phytophagous insects of different orders and differing host acceptance

traits (i.e. generalist vs. specialist) in response to host infection by fungal endophytes

(Gange et al. 2012). We also consider that the overall interaction between mites and the

endophyte can be much more complex, as it involves direct interactions between the three

species of mites. Such interactions could explain why the increased abundance of T.

urticae and Ac. mckenziei on endophyte-free plants coincided with the reduced abundance

of Ab. hystrix. In the study presented here the two mite species that were less abundant on

choked El. repens, viz. T. urticae and Ac. mackenziei, were also less abundant in general

than Ab. hystrix, regardless of the presence of Ep. bromicola (Fig. 2a). This would be

Table 2 Results of generalized
linear models (likelihood type 3
test) examining the effects of
endophytic infection and study
site (grouping predictors), and
plant size (numerical predictor-
covariate) on the number of mites
infesting plants. Data on each
mite species were analyzed with
a separate model. Please note that
the model adjusted comparisons
between groups for a mean plant
size

df Log-likelihood Chi-square p

Tetranychus urticae

Study site 3 -4340.48 4667.772 0.000001

Endophyte presence 1 -2117.72 222.255 0.000001

Plant size index 1 -2136.41 259.638 0.000001

Abacarus hystrix

Study site 3 -2239.76 833.3133 0.000001

Endophyte presence 1 -1845.89 45.5701 0.000001

Plant size index 1 -1909.06 171.9009 0.000001

Aculodes mckenziei

Study site 2 -527.357 342.4036 0.000001

Endophyte presence 1 -389.633 66.9559 0.000001

Plant size index 1 -461.451 210.5917 0.000001
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expected if the presence of Ep. bromicola in only a subset of El. repens plants provided a

competitive advantage to local populations of Ab. hystrix, compared to T. uriticae and Ac.

mackenziei, where all three species are utilizing El. repens. Manipulative experiments

testing one mite species at a time will be necessary to properly quantify these interactions

although such studies are complicated by the unpredictable nature of the development of

the sexually reproductive forms of Epichloë spp. (characterized by the choke disease of

their hosts), which may depend on environmental, geographical, or genotypic (either host

or endophyte) factors (reviewed by Tadych et al. 2014). As such, although the results of the

study presented here are preliminary, they provide information that should stimulate fur-

ther investigation into the possible roles of endophytes in mite-plant interactions, which are

largely unknown to date.

The results of this study suggest that herbivorous mite presence may be either positively

or negatively correlated with the presence of choke in a grass host, depending on the

species. This echoes studies of herbivorous mites sharing host plants with phytopathogenic

fungi, in which either greater or lesser mite abundance has been observed in the presence

of a fungus depending on the system. For example, mango bud tissue colonized by

Fusarium mangiferae Britz, Wingfield & Marasas, and wheat and quackgrass leaves

colonized by Puccinia spp., supported significantly higher populations of eriophyoid mites

compared to healthy plants (Gamliel-Atinsky et al. 2010). Similarly, densities and
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Fig. 2 a Number of mites
belonging to three species
occupying the grass Elymus
repens either with or without the
endophytic fungus Epichlo/
bromicola. b Difference in the
number of mites on plants at
different study sites. Because the
number of mites was positively
related to the size of plants, the
graphs show mean numbers of
mites with confidence intervals,
modeled for an average-size plant
(see Table 2)
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incidence of T. urticae were greater on apple and cherry leaves infected with powdery

mildew than on healthy leaves collected from orchards (Reding et al. 2001). Conversely,

populations of T. urticae grew less rapidly on plants that had been inoculated with the

fungal pathogen Verticilium dabliae Kleb. than on disease-free control plants (Karban et al.

1987). Herbivorous mites may increase the incidence and severity of fungal infection on

host plants either by vectoring pathogen spores on their bodies (Batra and Stavely 1994;

Abdel-Sater and Eraky 2001; Gamliel-Atinsky et al. 2010) or by providing wound-sites for

fungal penetration (Petty et al. 2002; Cardenas et al. 2003). Of the mite species observed in

this study, only Ab. hystrix appears to be a candidate for vectoring Ep. bromicola between

El. repens plants, given the positive correlation between the presence of choke disease and

Ab. hystrix abundance. Further studies would be required to ascertain such a role for this

mite species.

As part of this study, the control plants (i.e. those without choke symptoms) were tested

to ensure that asymptomatic Ep. bromicola was not present. However, given that many

Epichloë spp., including Ep. bromicola, occur as either asexual, asymptomatic or sexual,

choke-producing forms (Brem and Leuchtmann 2003; Schardl et al. 2013), one question

that arises from this study is whether the observed differences in mite abundance in the

presence of choke symptoms would also occur in the presence of the asexual, asymp-

tomatic form of Ep. bromicola. Indeed, in one such experiment, fall armyworm (Spo-

doptera frugiperda Smith) larvae that were fed red fescue (Festuca rubra L.) infected with

asymptomatic Epichloë typhina (Pers.) Tul., did not survive to pupation, compared to 43 %

survival on red fescue without Ep. typhina (Clay et al. 1993), showing that the presence of

choke-disease symptoms was not necessary to affect these herbivores.

Recent studies (Gange et al. 2007; Eschen et al. 2010) have revealed differing effects on

insect herbivores from either single or multiple endophyte. It is not known if any additional

endophyte species were present within the choked El. repens plants in this study, although

given the breadth of endophyte species recorded from Elymus (Ringelberg et al. 2012) and

other grass species (Baynes et al. 2012), it is possible that one or more asymptomatic

endophyte species could have been present in combination with Ep. bromicola in the El.

repens plants analyzed in this study, with unpredictable effects. Clearly, at this time the

multitrophic effects of microbial plant symbionts represent a great opportunity for future

study in the field of plant ecology.
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