1,381 research outputs found
-Nucleus Scattering at Low and Intermediate Energies
We calculate -nucleus elastic differential, reaction and total cross
sections for different nuclei (C,Ca and Pb) at several
laboratory antikaon momenta, ranging from 127 MeV to 800 MeV. We use different
antikaon-nucleus optical potentials, some of them fitted to kaonic atom data,
and study the sensitivity of the cross sections to the considered
antikaon-nucleus dynamics.Comment: Only 4 pages, Latex, 3 Figures. This version is much shorter than the
previous one. Some details and references have been omitte
Cognitive Analytic Therapy in People with Learning Disability: An investigation into the common reciprocal roles found within this client group
Developments over the last twenty years have shown that, contrary to previous opinion, people with learning disabilities can benefit from psychotherapy (Sinason 1992; Kroese, Dagnan & Loumidia, 1997). Cognitive Analytic Therapy (CAT) has been adapted for use with a learning disability population (Ryle 2002). CAT collaboratively examines the Reciprocal Roles (RRs) a client plays in relationships. These are impacted by clients’ experiences of the world. The aim of this research is to identify which RRs may become apparent in working with people with learning disabilities. The therapy notes of participants (n=16) who had undergone CAT were examined and analysed using content analysis. Twenty-two different RRs were found. Four common Reciprocal Roles and two common idealised Reciprocal Roles were identified. Other observations about the data are presented. The limitations and clinical implications of the study are discussed
The AMBRE Project: searching for the closest solar siblings
Finding solar siblings, that is, stars that formed in the same cluster as the
Sun, will yield information about the conditions at the Sun's birthplace. We
search for solar sibling candidates in AMBRE, the very large spectra database
of solar vicinity stars. Since the ages and chemical abundances of solar
siblings are very similar to those of the Sun, we carried out a chemistry- and
age-based search for solar sibling candidates. We used high-resolution spectra
to derive precise stellar parameters and chemical abundances of the stars. We
used these spectroscopic parameters together with Gaia DR2 astrometric data to
derive stellar isochronal ages. Gaia data were also used to study the
kinematics of the sibling candidates. From the about 17000 stars that are
characterized within the AMBRE project, we first selected 55 stars whose
metallicities are closest to the solar value (-0.1 < [Fe/H] < 0.1 dex). For
these stars we derived precise chemical abundances of several iron-peak, alpha-
and neutron-capture elements, based on which we selected 12 solar sibling
candidates with average abundances and metallicities between -0.03 to 0.03 dex.
Our further selection left us with 4 candidates with stellar ages that are
compatible with the solar age within observational uncertainties. For the 2 of
the hottest candidates, we derived the carbon isotopic ratios, which are
compatible with the solar value. HD186302 is the most precisely characterized
and probably the most probable candidate of our 4 best candidates. Very precise
chemical characterization and age estimation is necessary to identify solar
siblings. We propose that in addition to typical chemical tagging, the study of
isotopic ratios can give further important information about the relation of
sibling candidates with the Sun. Ideally, asteroseismic age determinations of
the candidates could solve the problem of imprecise isochronal ages.Comment: Accepted for publication in A&
The nature of the Lambda(1405)
We present here some results supporting the nature of the
resonance as dynamically generated from the meson baryon interaction in coupled
channels and resulting from the superposition of two close-by poles. We find
support for this picture in the reaction,
which shows a different shape than the one obtained from the reaction. We also call the attention to the with in the region, which shows a narrow
peak in the calculations around 1420 MeV. We also report on recent calculations
of the radiative decay of the two states and on reactions to
obtain information on these decay modes. Finally, we present results for the
reaction recently measured at ANKE/COSY and compare
them with theoretical results.Comment: Talk given at the NSTAR2007 Workshop, Bonn September 200
Effects of pseudoscalar-baryon channels in the dynamically generated vector-baryon resonances
We study the interaction of vector mesons with the octet of stable baryons in
the framework of the local hidden gauge formalism using a coupled channels
unitary approach, including also the pseudoscalar-baryon channels which couple
to the same quantum numbers. We examine the scattering amplitudes and their
poles, which can be associated to known baryon resonances,
and determine the role of the pseudoscalar-baryon channels, changing the width
and eventually the mass of the resonances generated with only the basis of
vector-baryon states
Dynamically generated resonances from the vector octet-baryon decuplet interaction
We study the interaction of the octet of vector mesons with the decuplet of
baryons using Lagrangians of the hidden gauge theory for vector interactions.
The unitary amplitudes in coupled channels develop poles that can be associated
with some known baryonic resonances, while there are predictions for new ones
at the energy frontier of the experimental research. The work offers guidelines
on how to search for these resonances
Meson-Baryon Unitarized Coupled Channel Chiral Perturbation Theory and the (1405) and (1670) Resonances
The wave meson-baryon scattering is analyzed for the strangeness
and isospin I=0 sector in a Bethe-Salpeter coupled channel formalism
incorporating Chiral Symmetry. Four channels have been considered: , , and . The required input to solve
the Bethe-Salpeter equation is taken from lowest order Chiral Perturbation
Theory in a relativistic formalism. There appear undetermined low energy
constants, as a consequence of the renormalization of the amplitudes, which are
obtained from fits to the mass-spectrum, to the elastic
and --matrices and to the
cross section data. The position and residues of the
complex poles in the second Riemann Sheet of the scattering amplitude determine
masses, widths and branching ratios of the (1405) and
(1670) resonances, in reasonable agreement with experiment. A good
overall description of data, from threshold up to 1.75 GeV, is
achieved despite the fact that three-body channels have not been explicitly
included.Comment: 23 pages, Latex, 10 Figures. In this revised version a new subsection
3.6 on Heavy Baryon Expansion and new references have been adde
Structural and Electronic Properties of Small Neutral (MgO)n Clusters
Ab initio Perturbed Ion (PI) calculations are reported for neutral
stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures
was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full
geometrical relaxation was considered. Correlation corrections were included
for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by
Clementi. The results obtained compare favorably to the experimental data and
other previous theoretical studies. Inclusion of correlaiotn is crucial in
order to achieve a good description of these systems. We find an important
number of new isomers which allows us to interpret the experimental magic
numbers without the assumption of structures based on (MgO)3 subunits. Finally,
as an electronic property, the variations in the cluster ionization potential
with the cluster size were studied and related to the structural isomer
properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in
Phys. Rev.
Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances
We determine the helicity amplitudes A_1/2 and radiative decay widths in the
transition Lambda(1670) to gamma Y (Y=Lambda or Sigma^0). The Lambda(1670) is
treated as a dynamically generated resonance in meson-baryon chiral dynamics.
We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 3
\pm 2 keV and to gamma Sigma^0 as 120 \pm 50 keV. Also, the Q^2 dependence of
the helicity amplitudes A_1/2 is calculated. We find that the K Xi component in
the Lambda(1670) structure, mainly responsible for the dynamical generation of
this resonance, is also responsible for the significant suppression of the
decay ratio Gamma_{gamma Lambda}/Gamma_{gamma Sigma^0}. A measurement of the
ratio would, thus, provide direct access to the nature of the Lambda(1670). To
compare the result for the Lambda(1670), we calculate the helicity amplitudes
A_1/2 for the two states of the Lambda(1405). Also, the analytic continuation
of Feynman parameterized integrals of more complicated loop amplitudes to the
complex plane is developed which allows for an internally consistent evaluation
of A_1/2.Comment: 15 pages, 8 figure
Flavor SU(3) breaking effects in the chiral unitary model for meson-baryon scatterings
We examine flavor SU(3) breaking effects on meson-baryon scattering
amplitudes in the chiral unitary model. It turns out that the SU(3) breaking,
which appears in the leading quark mass term in the chiral expansion, can not
explain the channel dependence of the subtraction parameters of the model,
which are crucial to reproduce the observed scattering amplitudes and resonance
properties.Comment: RevTeX4, 4 pages, 3 figures, 2 table
- …
