2,978 research outputs found

    Revisited fluorine abundances in the globular cluster M22 (NGC 6656)

    Full text link
    Fluorine is a fairly good tracer of formation histories of multiple stellar populations in globular clusters as already revealed by several studies. Large variations in fluorine abundance in red giant stars of the globular cluster M22 have been recently reported by two different groups. Futhermore, one of these studies claims that the abundance of fluorine is anti-correlated with sodium abundances in this cluster, leading to strong conclusions on the chemical history of M22. To validate this important finding, we re-examine the F abundance determinations of some of the previously studied stars. We have thus reanalysed some high-resolution VLT/CRIRES spectra of RGB stars found in M22 in order to re-estimate their fluorine abundance from the spectral synthesis of the HF line at 2.336microns. Unlike what has been previously estimated, we show that only upper limits or doubtful fluorine abundances with large uncertainties in M22 RGB stars can be derived. This is probably caused by an incorrect identification of continuum fluctuations as the HF signature combined with a wrong correction of the stellar radial velocity. Such continuum fluctuations could be the consequences of telluric residuals that are still present in the analysed spectra. Therefore, no definitive conclusions on the chemical pollution caused by the M22 first stellar generation can presently be drawn from the fluorine content of this cluster.Comment: A&A, in pres

    Fluorine abundances and the puzzle of globular cluster chemical history

    Full text link
    The abundance of fluorine in a few Galactic globular clusters is known to strongly vary from star-to-star. These unexpected chemical properties are an additional confirmation of the chemical inhomogeneities already found in several GC, and probably caused by the first generations of stars formed in these systems. The aim of this article is to complement our understanding of the F-behaviour in GC stars and to look for new constraints on the formation histories of their multiple stellar populations. We have collected near-IR spectra of 15 RGB stars belonging to GC spanning a wide range of metallicity: 47 Tuc, M4, NGC6397 and M30. F, Na and Fe abundances have been estimated by spectral synthesis. No anticorrelation between F and Na abundances are found for the most metal-rich cluster of the sample (47 Tuc). In this GC, RGB stars indeed exhibit rather small differences in [F/Fe] unlike the larger ones found for the [Na/Fe] ratios. This reveals a rather inhomogeneous stellar system and a complex chemical evolution history for 47 Tuc . In M4, one star of our study confirms the previous Na-F distribution reported by another group in 2005. For the two very metal-poor GC (NGC6397 and M30), only upper limits of F abundances have been derived. We show that F abundances could be estimated in such metal-poor GC with current telescopes and spectrographs only if unexpected F-rich giants are found and/or exceptional observational conditions are met. The distribution of the F and Na abundances in GC reveal that their RGB members seem to belong to two well-separated regions. All the RGB stars analysed so far in the different GC are indeed found to be either F-rich Na-poor or F-poor Na-rich. Such well-separated bimodal regimes are consistent with the separate formation episodes suspected in most galactic GC.Comment: Astronomy & Astrophysics, in pres

    Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm

    Full text link
    We present an automated procedure for the derivation of atmospheric parameters (Teff, log g, [M/H]) and individual chemical abundances from stellar spectra. The MATrix Inversion for Spectral SythEsis (MATISSE) algorithm determines a basis, B_\theta(\lambda), allowing to derive a particular stellar parameter \theta by projection of an observed spectrum. The B_\theta(\lambda) function is determined from an optimal linear combination of theoretical spectra and it relates, in a quantitative way, the variations in the spectrum flux with variations in \theta. An application of this method to the GAIA/RVS spectral range is described, together with its performances for different types of stars of various metallicities. Blind tests with synthetic spectra of randomly selected parameters and observed input spectra are also presented. The method gives rapid, accurate and stable results and it can be efficiently applied to the study of stellar populations through the analysis of large spectral data sets, including moderate to low signal to noise spectra

    Rotation of Hot Horizontal Branch Stars in Galactic Globular Clusters

    Full text link
    We present high resolution UVES+VLT spectroscopic observations of 61 stars in the extended blue horizontal branches of the Galactic globular clusters NGC 1904 (M79), NGC 2808, NGC 6093 (M80), and NGC 7078 M15). Our data reveal for the first time the presence in NGC 1904 of a sizable population of fast (v sin(i) >= 20 km/s) horizontal branch (HB) rotators, confined to the cool end of the EHB, similar to that found in M13. We also confirm the fast rotators already observed in NGC 7078. The cooler stars (T_eff < 11,500 K) in these three clusters show a range of rotation rates, with a group of stars rotating at ~ 15 km/s or less, and a fast rotating group at ~ 30 km/s. Apparently, the fast rotators are relatively more abundant in NGC 1904 and M13, than in NGC 7078. No fast rotators have been identified in NGC 2808 and NGC 6093. All the stars hotter than T_eff ~ 11,500 K have projected rotational velocities vsini< 12 km/s. The connection between photometric gaps in the HB and the change in the projected rotational velocities is not confirmed by the new data. However, our data are consistent with a relation between this discontinuity and the HB jump.Comment: 2 pages, 1 figure, A.S.P. Conf. Ser., in press in Vol. 296, 200

    Non-localities and Fermi motion corrections in K−K^- atoms

    Get PDF
    We evaluate the p-wave K−NK^-N amplitudes from the chiral Lagrangians and from there construct the p-wave part of the K−K^- nucleus optical potential plus a small s-wave part induced from the elementary p-wave amplitude and the nuclear Fermi motion. Simultaneously, the momentum and energy dependence of the s-wave optical potential, previously developed, are taken into account and shown to generate a small p-wave correction to the optical potential. All the corrections considered are small compared to the leading s-wave potential, and lead to changes in the shifts and widths which are smaller than the experimental errors. A thorough study of the threshold region and low densities is conducted, revealing mathematical problems for which a physical solution is given.Comment: revised version, 28 pages, Latex, 8 postscript figures. Submitted to Nucl. Phys.

    Parameter Estimation from an Optimal Projection in a Local Environment

    Full text link
    The parameter fit from a model grid is limited by our capability to reduce the number of models, taking into account the number of parameters and the non linear variation of the models with the parameters. The Local MultiLinear Regression (LMLR) algorithms allow one to fit linearly the data in a local environment. The MATISSE algorithm, developed in the context of the estimation of stellar parameters from the Gaia RVS spectra, is connected to this class of estimators. A two-steps procedure was introduced. A raw parameter estimation is first done in order to localize the parameter environment. The parameters are then estimated by projection on specific vectors computed for an optimal estimation. The MATISSE method is compared to the estimation using the objective analysis. In this framework, the kernel choice plays an important role. The environment needed for the parameter estimation can result from it. The determination of a first parameter set can be also avoided for this analysis. These procedures based on a local projection can be fruitfully applied to non linear parameter estimation if the number of data sets to be fitted is greater than the number of models

    The AMBRE Project: Stellar Parameterisation of the ESO:UVES archived spectra

    Full text link
    The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. The analysis of the UVES archived spectra for their stellar parameters has been completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51921 spectra for the six standard setups were analysed. The AMBRE analysis pipeline uses the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid is currently constrained to FGKM stars only. Stellar atmospheric parameters are reported for 12,403 of the 51,921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3,708 stars. Effective temperature, surface gravity, metallicity and alpha element to iron ratio abundances are provided for 10,212 spectra (~19.7%), while at least effective temperature is provided for the remaining 2,191 spectra. Radial velocities are reported for 36,881 (~71.0%) of the analysed archive spectra. Typical external errors of sigmaTeff~110dex, sigmalogg~0.18dex, sigma[M/H]~0.13dex, and sigma[alpha/Fe]~0.05dex with some reported variation between giants and dwarfs and between setups are reported. UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects which lie within the FGKM parameter space of the AMBRE slow rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.Comment: 19 pages, 16 figures, 11 table
    • …
    corecore