406 research outputs found
Optical Spatial integration methods for ambiguity function generation
A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown
MedEvi: Retrieving textual evidence of relations between biomedical concepts from Medline
Summary: Search engines running on MEDLINE abstracts have been widely used by biologists to find publications that are related to their research. The existing search engines such as PubMed, however, have limitations when applied for the task of seeking textual evidence of relations between given concepts. The limitations are mainly due to the problem that the search engines do not effectively deal with multi-term queries which may imply semantic relations between the terms. To address this problem, we present MedEvi, a novel search engine that imposes positional restriction on occurrences matching multi-term queries, based on the observation that terms with semantic relations which are explicitly stated in text are not found too far from each other. MedEvi further identifies additional keywords of biological and statistical significance from local context of matching occurrences in order to help users reformulate their queries for better results
Pax Permanent Martian Base: Space Architecture for the First Human Habitation on Mars
The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee investigated the implications of different mission scenarios, the Martian environment, supporting technologies and especially environment-behavior considerations for the design of the first permanent Martian base. The report includes habitability design requirements based on environment-behavior research, concept design and design development for the first permanent Martian base and habitat.https://dc.uwm.edu/caupr_mono/1052/thumbnail.jp
Recommended from our members
Ontology Clustering with OWL2Vec*
In this work we present an exploratory study to apply OWL2Vec* to drive the clustering of ontology entities (i.e., ontology clustering). OWL2Vec* is a state-of-the-art system that creates embeddings, capturing the semantics of both entities and tokens that appear in the ontology
GOAnnotator: linking protein GO annotations to evidence text
BACKGROUND: Annotation of proteins with gene ontology (GO) terms is ongoing work and a complex task. Manual GO annotation is precise and precious, but it is time-consuming. Therefore, instead of curated annotations most of the proteins come with uncurated annotations, which have been generated automatically. Text-mining systems that use literature for automatic annotation have been proposed but they do not satisfy the high quality expectations of curators. RESULTS: In this paper we describe an approach that links uncurated annotations to text extracted from literature. The selection of the text is based on the similarity of the text to the term from the uncurated annotation. Besides substantiating the uncurated annotations, the extracted texts also lead to novel annotations. In addition, the approach uses the GO hierarchy to achieve high precision. Our approach is integrated into GOAnnotator, a tool that assists the curation process for GO annotation of UniProt proteins. CONCLUSION: The GO curators assessed GOAnnotator with a set of 66 distinct UniProt/SwissProt proteins with uncurated annotations. GOAnnotator provided correct evidence text at 93% precision. This high precision results from using the GO hierarchy to only select GO terms similar to GO terms from uncurated annotations in GOA. Our approach is the first one to achieve high precision, which is crucial for the efficient support of GO curators. GOAnnotator was implemented as a web tool that is freely available at
GoGene: gene annotation in the fast lane
High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4 000 000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18 000 000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene
A realistic assessment of methods for extracting gene/protein interactions from free text
Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community
Domus I and Dymaxion: Two Concept Designs for Lunar Habitats
Two concept designs for lunar habitats are explored and developed in this monograph based on human factors/environment-behavior considerations. Attention is given to initial operating configuration design requirements, different technological options and 12 different habitat concepts. Domus 1 is a pressurized self-supporting membrane structure (PSSMS) proposed by Chow and Lin. Dymaxion is a dome structure based on the work of Buckminster Fuller. The master plan, construction sequencing, technical subsystems and interior configuration of both of these concepts are presented.https://dc.uwm.edu/caupr_mono/1041/thumbnail.jp
SciMiner: web-based literature mining tool for target identification and functional enrichment analysis
Summary:SciMiner is a web-based literature mining and functional analysis tool that identifies genes and proteins using a context specific analysis of MEDLINE abstracts and full texts. SciMiner accepts a free text query (PubMed Entrez search) or a list of PubMed identifiers as input. SciMiner uses both regular expression patterns and dictionaries of gene symbols and names compiled from multiple sources. Ambiguous acronyms are resolved by a scoring scheme based on the co-occurrence of acronyms and corresponding description terms, which incorporates optional user-defined filters. Functional enrichment analyses are used to identify highly relevant targets (genes and proteins), GO (Gene Ontology) terms, MeSH (Medical Subject Headings) terms, pathways and protein–protein interaction networks by comparing identified targets from one search result with those from other searches or to the full HGNC [HUGO (Human Genome Organization) Gene Nomenclature Committee] gene set. The performance of gene/protein name identification was evaluated using the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) version 2 (Year 2006) Gene Normalization Task as a gold standard. SciMiner achieved 87.1% recall, 71.3% precision and 75.8% F-measure. SciMiner's literature mining performance coupled with functional enrichment analyses provides an efficient platform for retrieval and summary of rich biological information from corpora of users' interests
- …