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Abstract
Background: The automated extraction of gene and/or protein interactions from the literature
is one of the most important targets of biomedical text mining research. In this paper we present
a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users.
Hence we have specifically avoided methods that are complex to install or require
reimplementation, and we coupled our chosen extraction methods with a state-of-the-art
biomedical named entity tagger.

Results: Our results show: that performance across different evaluation corpora is extremely
variable; that the use of tagged (as opposed to gold standard) gene and protein names has a
significant impact on performance, with a drop in F-score of over 20 percentage points being
commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named
entity tagger outperforms two of the tools most widely used to extract gene/protein interactions.

Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user
community interested in automatically extracting gene and/or protein interactions from free text
is poorly served by current tools and systems. The public release of extraction tools that are easy
to install and use, and that achieve state-of-art levels of performance should be treated as a high
priority by the biomedical text mining community.

Background
The automated extraction of gene and/or protein interac-
tions (GPIs) from the literature is one of the most impor-
tant targets of biomedical text mining research. From a
biological standpoint, there are several distinct sub-types
of GPI, including the direct physical interactions between
proteins, protein-DNA interactions (notably the binding
of transcription factors to DNA sequences), and the

encoding of a given protein by a specific gene. However,
in the biomedical text mining community it is common
practice to treat all these interactions as belonging to a sin-
gle task – here termed the GPI extraction task.

By providing a publicly-available mechanism for convert-
ing multiple GPI corpora to a common format, Pyysalo
and co-workers have made it comparatively easy to under-
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take rich analyses of the performance of GPI extraction
tools [1] comparable to those already undertaken for
named-entity recognition tools [2,3].

Included within the paper by Pyysalo and co-workers is an
assessment of the performance of the RelEx GPI tool [4]
and a simple co-occurrence based method. Although the
analysis is both interesting and instructive, it is primarily
intended to shed light on the differences between GPI cor-
pora and does not, we believe, provide a realistic assess-
ment of GPI tool performance for the following reasons:

• The analysis uses the gold standard named entities
(mainly the names of genes and proteins) as annotated
within the corpora, and hence does not take into account
the effects of named entity recognition (NER) errors.

• The authors re-implemented RelEx (as a public imple-
mentation was not available), whereas a typical non-spe-
cialist user will prefer off-the-shelf tools that are relatively
easy to install and use.

The use of gold standard annotations in the evaluation of
GPI methods is commonplace. This includes shared tasks
such as the LLL challenge, for which the exact location of
the target entities within the text was provided in advance
[5]. For the GPI pairs sub-task at BioCreAtIvE II, a list of
relevant gene mention symbols and synonyms was pro-
vided in advance [6].

However, this evaluation protocol is potentially highly
misleading, as the performance scores it awards to GPI
algorithms are rather inflated. Our previous analyses of
gene/protein tagger performance have shown that exact
matching to the boundaries of the manually-annotated
entities in a range of corpora is around 50–60% with the
best performing taggers [2,3]. An evaluation of the impact
of tagger errors on the performance of GPI methods is one
of the main goals of this paper.

Here we present an evaluation of several GPI methods
coupled with a state-of-the-art entity tagger on five GPI
corpora. In addition to assessing the performance of each
method, we consider how much effort is involved in set-
ting it up and using it, as we believe this is a key issue for
most non-specialist users. Taken as a whole, we believe
our analysis represents the first realistic evaluation of GPI
extraction methods, and sheds light on their performance
in a way that is directly relevant to both users and devel-
opers.

Methods
GPI corpora
The five GPI corpora used in this evaluation were: the
AIMed corpus [7], the BioInfer corpus [8], the HPRD50

corpus [4], the IEPA corpus [9], and the LLL training cor-
pus, a GPI corpus produced for the LLL challenge [5]. Here
we provide a short summary of the five corpora. For a
more detailed comparison, see [1].

The AIMed corpus contains 225 abstracts manually anno-
tated for interactions between human genes and proteins.
Most of the abstracts contain interactions, but a signifi-
cant percentage (around 10%) do not, and were deliber-
ately added to provide negative examples. The HPRD50
corpus contains 50 abstracts in which human gene and
protein names were automatically identified using the
ProMiner protein and gene name tagger [10]. The IEPA
(Interaction Extraction Performance Assessment) corpus
contains 303 abstracts from PubMed, each containing a
specific pair of co-occurring chemicals obtained using 10
queries chosen to represent diverse biological research
topics. The LLL corpus was created as the shared dataset
for the Learning Language in Logic 2005 (LLL05) chal-
lenge and contains 77 sentences. The domain of LLL is
gene interactions of Bacillus subtilis. The BioInfer corpus
consists of 1100 sentences from PubMed abstracts that
contain at least one pair of interacting genes or proteins.
All protein, gene and RNA entities were manually anno-
tated, together with all interactions between these entities,
including static relations. Each interaction is mapped to
the Bioinfer relationship ontology, defined especially for
this purpose. BioInfer permits the annotation of relation-
ships with a complex structure, such as relationships
between relationships, or relationships of more than two
entities.

These corpora differ significantly in their working defini-
tions of the concept "gene/protein interaction". For exam-
ple, in the IEPA corpus an interaction is a "direct or
indirect influence of one on the quantity or activity of the
other" [9], whereas BioInfer additionally contains so-
called "static" entity relationships, such as family mem-
bership. Nevertheless, an analysis by Pyysalo and co-
workers has shown that "a clear majority of all interac-
tions [in these corpora]... correspond to events occurring
as part of biochemical processes in living cells", as
opposed to static relationships [1]. A more recent paper by
Pyysalo and a different set of co-workers advocates
addressing the extraction of static relationships as a dis-
tinct subtask [11], but this is not tackled by existing pub-
licly-available tools.

For our analysis we converted all five corpora to a unified
format using the conversion software provided by Pyysalo
and co-workers [1]. To simplify our analysis, all 68 sen-
tences in the BioInfer corpus that contain at least one dis-
continuous entity were discarded. For example, in the
phrase 'myosin heavy chain and light chains', the anno-
tated entities are 'myosin heavy chain' and 'myosin light
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chains', although the latter does not appear as a continu-
ous string in surface text.

Gene/protein taggers
In two earlier papers we concluded that the version of
ABNER [12] trained on the BioCreAtIvE corpus [13] was
the best performing tagger on a range of biomedical cor-
pora [2] and on a new corpus – ImmunoTome – consist-
ing of ten full-text immunological articles [3].

However, since the publication of those papers, we have
evaluated BANNER, a new biomedical named-entity rec-
ognition system implemented using conditional random
fields [14]. BANNER exploits a range of orthographic,
morphological and shallow syntax features, such as part-
of-speech tags, capitalisation, letter/digit combinations,
prefixes, suffixes and Greek letters. As with the best-per-
forming version of ABNER, BANNER was trained on the
BioCreAtIvE corpus.

As shown in tables 1 and 2, BANNER consistently outper-
forms ABNER on the same corpora used in our earlier
evaluations (Yapex [15], GENIA [16], ProSpecTome [2]
and ImmunoTome [3]), and has therefore been used for
the analysis of GPI methods we present here.

GPI extraction methods
A number of different GPI extraction methods have been
published in the literature (for recent discussions of pub-
lished methods see [17] and [18]), with some 26 teams
submitting runs for at least one of the GPI annotation
extraction tasks at BioCreAtIvE II [6].

However, our purpose here was to undertake an evalua-
tion of the state-of-the-art in GPI extraction relevant to
potential non-specialist users. In contrast to entity taggers,
a number of which are easy to install locally or can be
accessed directly via the Web, none of the GPI extraction
methods are trivial to install and use. This is partly a con-
sequence of the complex, modular nature of a typical
state-of-the-art GPI method that combines third-party
components (a part-of-speech tagger and one or more
parsers) with a machine learning or rule-based algorithm
for identifying possible relationships within a given parse.

As noted in [17], the vast majority of such GPI methods
are currently not publicly available.

Here we focus on four GPI methods: AkanePPI, Whatizit,
OpenDMAP, and a simple benchmark approach that we
developed ourselves using Perl regular expressions. One
system we have not evaluated, even though it is designed
primarily for non-specialists and is easy to use, is iHOP
[19]. iHOP is a dictionary-based system that uses genes
and proteins as hyperlinks between sentences and
abstracts in order to navigate information in PubMed.
When it comes to GPI, for every gene detected in a query,
there is a link that leads to sentences (and subsequently
abstracts) which describe interactions of that gene with
other genes. However, iHOP does not accept text submit-
ted by the user, making it unsuitable for the analyses we
undertook for this paper.

AkanePPI [20] is a state-of-the-art GPI method for which
the C++ source code is publicly available. AkanePPI com-
bines the version of the deep syntactic parser Enju that has
been retrained on the GENIA corpus [21] with a shallow
dependency parser [22]. A support vector machine with
tree kernels [23] is used to extract rules for identifying
pairs of interacting genes/proteins from a training corpus.
Here we used two versions of AkanePPI, the original, dis-
tributed version (AkanePPI(A)) trained on the AIMed cor-
pus, and a second version ((AkanePPI(B)) we retrained
ourselves on the BioInfer corpus. The authors report an F-
score of 52% for GPI extraction from unseen abstracts
[20].

OpenDMAP [24] is a general-purpose parsing and infor-
mation extraction platform that provides an Open Source
Java API. It was adapted to perform GPI extraction for the
Protein Interaction Pairs subtask at BioCreAtIvE II [6],
where it outperformed other participating systems,
achieving precision of 39% and recall of 31% when scores
were averaged over articles [25]. OpenDMAP uses a rule-
based approach. For BioCreAtIvE II, patterns were devised
manually from the BioCreAtIvE, PICorpus [26] and Pro-
disen [27] corpora in consultation with biologists. These
patterns have been made available for download together
with the main distribution and have been used here.

Table 1: The F-scores produced by ABNER and BANNER when 
applied to four corpora using sloppy matching criteria.

Y J P I

ABNER(B) 80.4 76.0 85.3 78.3

BANNER 85.0 77.5 89.7 83.4

Abbreviations are as follows: Y = Yapex; J = JNLPBA evaluation 
corpus; P = ProSpecTome; I = ImmunoTome; B = BioCreAtivE.

Table 2: The F-scores produced by ABNER and BANNER when 
applied to four corpora using strict matching criteria.

Y J P I

ABNER(B) 54.2 60.8 62.0 54.0

BANNER 62.0 61.0 68.7 53.9

Abbreviations are as follows: Y = Yapex; J = JNLPBA evaluation 
corpus; P = ProSpecTome; I = ImmunoTome; B = BioCreAtivE.
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Whatizit [28] is a modular text processing system availa-
ble through the EBI website. Of the wide range of text
mining services on offer, here we focused exclusively on
the protein interaction pipeline. (The core pipeline is
available separately from Whatizit in the form of the Pro-
tein Corral web application [29]. However, Protein Corral
is designed to perform Medline searches and does not
accept text submitted by the user.) The pipeline begins by
mapping gene/protein names to UniProt identifiers using
dictionary look-up. It then attempts to identify relation-
ships between any successfully mapped names using three
approaches of decreasing precision, but increasing cover-
age: natural language processing (Ppi); the co-occurrence
of two gene/protein names with an interaction verb
(Co3); and the co-occurrence of two names without an
interaction verb (Co). The abbreviations here are the ones
used on the Protein Corral website.

Finally, we developed our own simple baseline method
using Perl regular expressions. Every time two gene/pro-
tein names occur together within a sentence and have an
interaction keyword between them they are predicted to
be an interacting pair of genes/proteins. A minority of the
interaction words were inherited from two earlier projects
– GIFT [30] and GraphSpider [31]. The former derived its
verb list from FlyBase [32] and the latter from the LLL
training corpus. The remaining verbs were obtained semi-
automatically using the clueType event attribute in the
GENIA event corpus [33]. Our list of interaction keywords
and Perl script are available as supplementary material
[see Additional file 1 and Additional file 2 respectively].

In addition, we compare the performance of our baseline
method with the simpler co-occurrence baseline previ-
ously used by Pyysalo and co-workers, which predicts an
interaction between every pair of genes/proteins co-occur-
ring in a sentence irrespective of whether an interaction
verb is present [1]. To easily distinguish between these two
baseline methods within this paper, we call our keyword
baseline method Baseline(K) and the simple co-occur-
rence baseline method of Pyysalo et al. Baseline(C).

Evaluating performance
With the unified corpus format used here, all interactions
are both undirected and binary. Hence, when the gold
standard named entities are used, scoring is straightfor-
ward – either a given interaction has been predicted, or it
has not. However, when a tagger is used to identify puta-
tive gene/protein entities, there is more than one way to
score predicted interactions.

Elsewhere we have argued that "sloppy" matching criteria
(where the tagger scores a "hit" provided part of the name
is matched) provide a fairer evaluation of tagger perform-
ance than "strict" matching criteria (where the tagger is

required to match a given name exactly to score a "hit"),
as the latter is more sensitive to the essentially arbitrary
choices made when drawing up annotation guidelines for
the evaluation corpora – for example, whether the word
"mouse" is part of the protein name in the phrase "mouse
oxytocin" [3].

In the context of GPI extraction, the use of "sloppy"
matching criteria is somewhat more complex, as the fol-
lowing exemplar sentence from the LLL corpus illustrates:

Three new sigmaB-dependent genes (ydaE, ydaG and
yfkM) encoding proteins with still unknown functions
were also described.

In the LLL corpus, three interactions are annotated within
this sentence – sigmaB with ydaE, ydaG and yfkM respec-
tively. However, we found that BANNER tagged the
phrase "sigmaB-dependent genes" as a single entity, an
entity that has no interactions with ydaE, ydaG and yfkM
(they are simply instances of that entity). In this example,
it would be misleading to penalize the GPI extraction
method for failing to identify the three interactions in the
LLL corpus if it was using the entities identified by BAN-
NER.

The question arises, therefore, whether the use of sloppy
matching criteria for gene/protein names is, on balance,
more informative than strict matching criteria in the con-
text of GPI extraction. To investigate this issue, we manu-
ally inspected those interactions extracted by BANNER
and AkanePPI(A) from the two smallest corpora that
count as misses using strict criteria but hits using sloppy
criteria. Out of 30 such interactions from the LLL corpus,
we judged 24 to be valid interactions and six to be errone-
ous. Of these six, two had erroneous names (e.g. "sigB
mutant probably via sigma(H)"), whereas in the remain-
ing four the names were valid, but the interactions invalid.
For example, for the sentence from LLL given in the pre-
ceding paragraph, AkanePPI wrongly predicted that the
tagged entity "sigmaB-dependent genes" interacts with
"ydaG" and "yfkM". Out of 20 such interactions from the
HRPD50 corpus, we judged 16 to be valid interactions
and four to be erroneous. Of these four, all are attributa-
ble to invalid names being tagged by BANNER (for exam-
ple "1C" instead of "protein tyrosine phosphatase 1C",
"GC" and "GAP" instead of "GC-GAP").

To quantify this effect, we calculated the corrected F-score
for the two corpora by taking account of the false positives
uncovered during our manual analysis. For LLL, the cor-
rected F-score was 4 percentage points lower than the
sloppy criteria F-score and 20 percentage points higher
than the strict criteria F-score. For HPRD50, the corrected
F-score was 2 percentage points lower than the sloppy cri-
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teria F-score and 27 percentage points higher than the
strict criteria F-score. Consequently, we conclude that
sloppy matching criteria are significantly more informa-
tive than strict matching criteria, and it is the results for
sloppy criteria that we report in this paper.

Results and discussion
Ease of usage
We begin by considering how easy each of the major GPI
tools discussed in this paper – AkanePPI, Whatizit and
OpenDMAP – is to install and use.

Setting up the AkanePPI system involves downloading
and compiling the C++ source code. On running the make
script provided with the distribution, several components
are retrieved from their respective websites, notably the
Enju parser [34], TinyXML [35], SVMlight with Tree Ker-
nels [36], and Standoff Manager [37]. We found AkanePPI
easy to build and run on the pre-parsed example supplied,
but installing the Enju parser was non-trivial owing to
problems encountered with environment variables and
library dependencies. Enju only claims Linux compatibil-
ity, consequently we were unable to build it on a Mac,
despite AkanePPI advertising Mac compatibility.

AkanePPI is supplied with a configuration file tailored to
the AIMed corpus. Although this could be modified to
improve the performance of AkanePPI on different data,
most of the settings require linguistic expertise to under-
stand how this might be achieved. For this paper we have
used the AIMed configuration file with only trivial modi-
fications (reflecting the names and locations of files on
our local system), as we are primarily interested in evalu-
ating tools from the perspective of the general user.

Via its web interface, the Whatizit protein interaction
pipeline is easy to use, but the output does not specify
what interactions are present (it merely tags entity names
and interaction verbs), nor does it specify interaction con-
fidence levels. However, both of these output features are
available when the pipeline is used as a webservice or serv-
let. The example Java client provided is straightforward to
adapt given moderate proficiency in writing Java. Output
from the pipeline is in XML (we encountered some prob-
lems with mismatching XML tags).

Although arguably sensible for some applications, the
requirement that gene/protein names are mapped to Uni-
Prot identifiers makes the Whatizit protein interaction
pipeline different to the other systems evaluated here. It is
not possible to use pre-tagged entities with the pipeline,
be they the gold-standard corpus entities used in our eval-
uation, or those generated by a state-of-the-art tagger such
as BANNER. Moreover, in the case where the same protein
name occurs more than once in a single sentence, the

pipeline does not specify which of the names it has iden-
tified as providing evidence that an interaction is occur-
ring. (Our analysis shows that such sentences are
surprisingly common, accounting for between 14% and
24% of sentences in the five GPI corpora used here.) This
may be of little practical significance, but it does necessi-
tate the use of weaker scoring criteria than are generally
applied to the evaluation of GPI extraction methods. Con-
sequently we excluded Whatizit from most of the compar-
ative evaluations undertaken for this paper, although we
do separately assess its performance on our chosen GPI
corpora.

It is also worth noting that, as the Whatizit protein inter-
action pipeline is a remotely-hosted service (unlike the
other tools evaluated here), the user is dependent on the
reliability of third-party service provision. Our experience
was that the service was unavailable for several days dur-
ing our evaluation period lasting several weeks.

Installing OpenDMAP was reasonably straightforward but
not entirely trivial. It is supplied as a tarball containing the
Java source, technical documentation, etc., plus a pre-
compiled binary. As well as the main distribution, the user
must obtain a pair of JAR files from the Protégé [38] dis-
tribution, and for GPI extraction, a set of supplementary
patterns (originally designed for the BioCreAtIvE PPI sub-
task) that are provided separately. To configure OpenD-
MAP to use these patterns also requires an XML configura-
tion file, but this is not supplied with the patterns, so we
wrote our own by reference to one of the examples pro-
vided with the main distribution.

Submitting arbitrary text with marked-up entities is not a
trivial task either, and we were able to achieve this only
with help from the authors, including some sample code
custom-written for our requirements. Our experiences are
consistent with the fact that OpenDMAP is not designed
as a PPI/GPI application for biology or bioinformatics
researchers, even with the availability of the BioCreAtIvE
project files, but rather as an extensible tool for NLP
research and language engineering.

Of the tools evaluated for this paper, the web interface to
the Whatizit protein interaction pipeline is by far the eas-
iest to use, but also somewhat restricted; it will not suit all
potential users and applications. In the case of all other
tools, none proved entirely trivial to download and use.
Indeed, in every case we found it necessary to contact the
authors in order to get the tool to work properly. Our con-
clusion is that, with the notable exception of Whatizit, the
vast majority of biologists will not be able to install and
use these tools – in spite of the fact that biologists are one
of the most important groups of potential users for this
kind of tool.
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The performance of BANNER
Before moving on to evaluate the performance of the GPI
extraction tools on the GPI corpora, it is useful to consider
how well the gene/protein name tagger BANNER per-
forms on these corpora. The performance of BANNER is
summarized in Table 3. Here BANNER is shown to per-
form best on BioInfer, the corpus with by far the highest
annotation density [1]. The poor performance on IEPA is
attributable to the fact only a subset of the gene and pro-
tein names in this corpus are annotated (reducing BAN-
NER's precision), whilst the labelled entities in this corpus
include cholesterol, gibberellins, and flavonoids in addi-
tion to genes and proteins (reducing BANNER's recall).

This level of performance is broadly comparable to that
for standard gene/protein NER corpora, as reported in
table 1.

The performance of GPI extraction methods with gold-
standard entities
The performance of our chosen GPI extraction methods
on the five GPI corpora with gold-standard named-entity
annotations is summarized in Table 4. In terms of F-score,
the key features of these results are as follows:

• The best method is the rule-based RelEx, which is not,
however, publicly available.

• Although OpenDMAP has the highest precision, it has
by far the lowest coverage leading to the worst over all per-
formance on all corpora. Given that its coverage is so low
(ranging from 2.1% to 10.4%), we have largely excluded
it from our subsequent analyses. Its poor performance is
most likely attributable to the BioCreAtivE pattern set
being optimized specifically for protein-protein interac-
tions (whereas our chosen evaluation corpora annotate a
mixture of gene and protein interactions), rather than
being a fundamental characteristic of the underlying
approach – there are no patterns in this set based around
words like "transcribed", "express" or "induction" which
are very common in sentences describing gene regulation
events. However, OpenDMAP's BioCreAtivE entry
showed highly variable results even on this more con-

strained topic, where its interaction extraction F-score on
its own training data was only 7.8% [25].

• AkanePPI trained on BioInfer performs significantly bet-
ter than AkanePPI trained on AIMed. In this context it is

Table 3: The (P)recision, (R)ecall and (F)-measure scores for 
BANNER when applied to five GPI corpora.

A B H I L

P 80.5 97.5 70.8 60.4 80.0

R 85.4 85.1 83.2 69.6 88.7

F 82.9 90.8 76.5 64.6 84.1

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.

Table 4: The performance (precision, recall and F-score) of six 
GPI extraction methods when applied to five GPI corpora using 
gold-standard named entities.

A B H I L

Precision:

AkanePPI(A) (57.0) 29.2 61.5 60.2 69.6

AkanePPI(B) 29.1 (56.8) 52.0 66.2 76.7

RelEx 40 39 76 74 82

Baseline(K) 22.8 24 54 44.8 (53.9)

Baseline(C) 17 13 38 41 50

OpenDMAP 61 62.3 77.3 87.5 100

Recall:

AkanePPI(A) (74.0) 31.8 44.2 32.5 23.8

AkanePPI(B) 52.9 (85.4) 55.8 51.3 40.2

RelEx 50 45 64 61 72

Baseline(K) 51.5 52.2 66.9 56.4 (72)

Baseline(C) 95 99 100 100 100

OpenDMAP 9.1 5.9 10.4 2.1 2.4

F-score:

AkanePPI(A) (64.4) 30.5 51.4 42.2 35.4

AkanePPI(B) 37.5 (68.2) 53.8 57.8 52.8

RelEx 44 41 69 67 77

Baseline(K) 31.6 32.9 59.7 49.9 (61.6)

Baseline(C) 29 23 55 58 66

OpenDMAP 15.9 10.8 18.4 4.1 4.8

The figures for RelEx and Baseline(C) are taken from Pyysalo et al. 
(2008). (Note that we use a simplified version of BioInfer compared 
to the one used in that paper, so the figures for this corpus are not 
completely comparable.) Figures are given in brackets where a corpus 
was used to develop a given method. Corpus abbreviations are as 
follows: A = AIMed; B = BioInfer; H = HPRD50; I = IEPA; L = LLL.
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worth noting that our earlier experience with the tagger
ABNER indicates that the choice of training corpus can
have a significant impact on the performance of a text-
mining tool [2,3].

• Our simple keyword-based baseline approach, Base-
line(K), performs surprisingly well. It out-performs the
standard version of AkanePPI (i.e. the version trained on
AIMed) on four of the five corpora. It also out-performs
the simpler co-occurrence baseline approach, Base-
line(C), on three of the corpora.

• The performance of all GPI extraction methods except
OpenDMAP is broadly correlated across all corpora.
Scores are consistently worst on BioInfer and AIMed, and
significantly higher on the other three corpora.

However, this is only part of the story, as the GPI extrac-
tion methods differ significantly in their relative perform-
ance with respect to precision and recall. Broadly
speaking, the two baselines are high-recall, low-precision
methods, whereas OpenDMAP and AkanePPI(A) are low-
recall, high-precision. Only the two methods that are not
publicly available, AkanePPI(B) and RelEx are reasonably
balanced in their precision/recall performance.

Finally, we wished to estimate the significance of remov-
ing the 68 sentences containing discontinuous entities
from the BioInfer corpus. To do this we evaluated the per-
formance of AkanePPI(A) on the entire BioInfer copus.
The result was that the F-measure dropped by 0.7 percent-
age points. This suggests that removing these sentences
does not have a large impact on the validity of the
reported scores.

Joint error analysis
To understand the nature of the GPI extraction errors and
whether they are correlated between different tools, we
undertook a joint error analysis for AkanePPI(A),
AkanePPI(B) and Baseline(K). (OpenDMAP was excluded
from this analysis on the grounds of its exceptionally low
coverage.) Given that the two versions of AkanePPI were
trained on AIMed and BioInfer respectively, whereas Base-
line(K) incorporates keywords from the LLL corpus, we
have performed our analysis on the only corpora that rep-
resent unseen data for all three methods: HPRD50 and
IEPA.

Of the 163 interactions in the HPRD50 corpus, 39 were
detected by all three methods and 16 missed by all three.
There were 6 false positive interactions common to all
three methods. The number of true positive interactions
identified by each method alone were 14 (AkanePPI(A)),
33 (AkanePPI(B)) and 40 (Baseline(K)) respectively.

Of the 335 interactions in the IEPA corpus, 52 were
detected by all three methods and 43 missed by all three.
There were 8 false positive interactions common to all
three methods. The number of true positive interactions
identified by each method alone were 40 (AkanePPI(A)),
90 (AkanePPI(B)) and 78 (Baseline(K)) respectively.

These results show that the correlation between the pre-
dictions of the different methods is relatively modest and
that there is, as a consequence, significant scope for
improving performance by combining the methods in a
single predictive system. For example, it would be rela-
tively easy to develop a high-recall system by naively com-
bining AkanePPI(A), AkanePPI(B) and Baseline(K) (this
would give recalls of 90% and 87% for HPRD50 and IEPA
respectively), although it would also generate large num-
bers of false positives.

We undertook a manual analysis of these results and iden-
tified the following key points:

• Easy interactions (joint true positives). As expected, the
interactions correctly identified by all three systems con-
sist of relatively simple sentences containing an interac-
tion verb that is on the Baseline(K) list, for example the
interactions between A (beta) (1–40) and PIP2-PLC in the
following sentence from the IEPA corpus: "Moreover,
A(beta) (1–40) significantly decreased the basal activity of
the PIP2-PLC in SPM and the enzyme activity regulated
through cholinergic receptors."

• Illusory interactions (joint false positives). Of the 14 false
positive interactions for both corpora, 6 are attributable to
negation, i.e. where the sentence says that two genes/pro-
teins do not interact. For example, the interactions
between A beta and PI-PLC, and A beta and PIP2-PLC in
the following sentence from the IEPA corpus: "Moreover,
A beta 25–35 had no effect on basal PIP2-PLC activity and
cytosolic PI-PLC and PIP2-PLC."

The other joint false positive interactions may be attribut-
able to sentence complexity. Hence, for example, the pre-
dicted interaction between leptin and NPY in the sentence:
"Significantly increased leptin and galanin levels in post-
menopausal obese women coupled with decreased NPY
levels revealed some changes in the neuropeptides regu-
lating eating behavior, which may be the reason for the
onset of postmenopausal obesity."

• Elusive interactions (joint false negatives). Manual analysis
of a subset of the jointly missed interactions indicates that
a large proportion are associated with sentences describ-
ing a specific set of processes that includes cross-linking,
immunopercipitation with antibodies, cross talk and
immunolocalisation. For example, all the tools missed the
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interaction between CB1 and orexin 1 receptor and/or
OX1R in the sentence "In the present study, we observed
evidence of cross-talk between the cannabinoid receptor
CB1 and the orexin 1 receptor (OX1R) using a heterologous
system."

• The strengths and weaknesses of Baseline(K). The baseline
algorithm often correctly retrieves interactions from com-
plex sentences that the other methods failed to parse suc-
cessfully, for example the interaction between CLIP-170
and phospho-LIS1 in the sentence "Overexpression of
CLIP-170 results in a zinc finger-dependent localization of
a phospho-LIS1 isoform and dynactin to MT bundles, rais-
ing the possibility that CLIP-170 and LIS1 regulate
dynein/dynactin binding to MTs." On the other hand,
Baseline(K) is prone to generate false positives whenever
there are many entities in a sentence, as it predicts an
interaction between every pair of entities that are sepa-
rated by an interaction keyword.

The effect of NER on GPI extraction
The effects of using the BANNER gene/protein tagger on
the performance of AkanePPI(A) and AkanePPI(B) are
shown in tables 5 and 6 respectively. These results show
that using the BANNER tagger rather than the gold-stand-

ard entities leads to a significant drop in performance,
with a fall of around 20 percentage points being common-
place. The negative impact of using BANNER is broadly
correlated with the performance of AkanePPI on a given
corpus; the better its performance using gold-standard
entities, the greater the negative impact of using BANNER.

Intuitively we expected the use of BANNER to have a
greater impact on recall than precision on the grounds
that AkanePPI would not be able to compensate for
missed entities (false negatives), but would frequently be
able to reject erroneous entities (false positives), as we
expected the latter would often not be engaged in an
apparent interaction. However, this was not the case in
practice. Indeed, with AkanePPI(A) the drop in precision
was always significantly greater than the drop in recall,
with even a slight improvement in recall being experi-
enced with the LLL corpus.

Of the 53 false positive gene and protein names identified
by BANNER in the LLL corpus, 26 are involved in 46 rela-
tionships that AkanePPI(A) identifies as GPIs but which
are not annotated as such in the corpus. Our manual anal-
ysis of these relationships shows that they fall into 3 main
categories:

Table 5: The effect of using the BANNER entity tagger 
compared to gold-standard entities on the performance 
(precision, recall and F-score) of AkanePPI trained on AIMed.

(A) B H I L

Precision:

With gold-standard entities 57.0 29.2 61.5 60.2 69.6

With BANNER 34.3 23.8 26.8 13.0 39.8

Δ precision 22.7 5.4 34.7 47.2 29.8

Recall:

With gold-standard entities 74.0 31.8 44.2 32.5 23.8

With BANNER 64.2 30.2 41.1 24.5 27.4

Δ recall 9.8 1.7 3.1 8.0 -3.7

F-score:

With gold-standard entities 64.4 30.5 51.4 42.2 35.4

With BANNER 44.7 26.6 32.4 17.0 32.5

Δ F-score 19.7 3.8 19.0 25.2 3.0

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.

Table 6: The effect of using the BANNER entity tagger 
compared to gold-standard entities on the performance 
(precision, recall and F-score) of AkanePPI trained on BioInfer.

A (B) H I L

Precision:

With gold-standard entities 29.1 56.8 52.0 66.2 76.7

With BANNER 32.3 49.5 35.1 17.8 50.7

Δ precision -3.2 7.3 16.9 48.4 26.0

Recall:

With gold-standard entities 52.9 85.4 55.8 51.3 40.2

With BANNER 38.9 42.2 37.4 30.1 23.2

Δ recall 14.0 43.2 18.4 21.2 17.0

F-score:

With gold-standard entities 37.5 68.2 53.8 57.8 52.8

With BANNER 35.3 45.5 36.2 22.4 31.8

Δ F-score 2.2 22.7 17.6 35.4 21.0

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.
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1. Invalid interactions involving invalid names. Only two of
the 26 putative names tagged by BANNER are not the
names of genes or proteins: "ShaA mutant" (a bacterium),
and "AsiA form bacteriophage T4" (a virus). These two
names participate in five of the 46 false positive interac-
tions.

2. Invalid interactions involving valid names. In these cases
BANNER tagged a valid gene or protein name that had not
been annotated in the LLL corpus, but one or more inter-
actions identified by AkanePPI involving this gene or pro-
tein are nevertheless invalid. This situation accounts for
29 of the 46 false positive interactions. Here is an example
(with the names that are annotated in the LLL corpus ital-
icized):

DNase I footprinting showed that SpoIIID binds
strongly to two sites in the cotC promoter region, binds
weakly to one site in the cotX promoter, and does not
bind specifically to cotB.

In this case BANNER additionally tagged "DNase I" and
AkanePPI identified an erroneous interaction between
"DNAse I" and "CotB".

3. More-or-less valid interactions involving valid names. This
situation accounts for 12 of the 46 false positive interac-
tions. In these cases the LLL corpus has failed to annotate
an essentially valid interaction because:

• There is an alternative, more specific name available.
Take for example the phrase

The sigma W regulon includes a penicillin binding
protein (PBP4*) and a co-transcribed amino acid race-
mase (RacX)...

Here BANNER tags "penicillin binding protein"
instead of "PBP4 *" and an interaction between
"sigma W regulon" and "penicillin binding protein" is
annotated by AkanePPI.

• A gene or protein name is deemed to be too general by
the LLL corpus. For example,

Our data demonstrate that the CtsR protein acts as a
global repressor of the clpC operon, as well as other
class III heat shock genes...

Here BANNER additionally tags "class III heat shock
genes".

• The gene or protein is arguably involved in an uninter-
esting, though valid, interaction. For example:

In contrast, sspJ is transcribed in the forespore com-
partment by RNA polymerase with the forespore-spe-
cific sigmaG and appears to give a monocistronic
transcript.

Here BANNER tags "RNA polymerase" AkanePPI identi-
fies an interaction between "RNA polymerase" and "sspJ",
an interaction that LLL presumably ignores because it is
uninteresting.

The fact that only 12 of the 46 interactions that arise from
false positive names are, in fact, valid suggests that over-
prediction by gene/protein name taggers is potentially a
serious problem. An analysis by Pyysalo and coworkers
[1] appears to shed light on this effect. Their analysis sug-
gests that the performance of GPI extraction methods is
correlated with the I/EP of a given corpus, where I is the
average number of interactions per sentence and EP is the
average number of entity pairs per sentence [1]; roughly
speaking, the smaller the value of I/EP, the more difficult
the corresponding GPI extraction task. They go on to
point out that, "As more proteins are annotated, we would
not expect I to grow more than linearly, while EP grows
quadratically". In this context, the potentially damaging
effect of false positive predictions by a name tagger such
as BANNER is clear (even where a given "false positive"
name may be judged a valid gene or protein name) – the
growth in the number of entity pairs makes the GPI extrac-
tion task more difficult.

It is worth noting that in the vast majority of these cases
where the entities tagged by BANNER lead to
AkanePPI(A) extracting a false positive interaction, the use
of gold standard entities does not lead to the detection of
the correct interaction, even though AkanePPI(A) is able
to avoid tagging the incorrect interaction. In other words,
entities tagged by BANNER are primarily responsible for
increasing the numbers of false positives, and not for pre-
venting the detection of true positives with AkanePPI(A).
This is consistent with the full set of results for
AkanePPI(A) on multiple corpora in table 5, which show
a modest drop in recall with entities tagged by BANNER,
but a large drop in precision.

One additional result that requires further explanation
concerns the performance of AkanePPI(A) on the LLL cor-
pus; AkanePPI(A) had higher recall with tagged entities
than with gold standard ones (see table 5) – in spite of the
fact that BANNER missed 27 genes/proteins (it correctly
tagged 212 of the 239 genes/proteins in the LLL corpus).
On manual inspection it was apparent that the improved
recall is attributable to BANNER's tendency to tag longer
versions of gene and protein names than appear in the
gold standard annotations. For example, BANNER tags
"cotX promoter" instead of "cotX" and, more dramati-
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cally, "IFN alpha tyrosine kinase Tyk-2" instead of "Tyk
2".

This is potentially significant because GPI prediction
methods typically inherit a single token instead of the
original, potentially multi-word name from the tagger;
hence in cases such as these, AkanePPI is making predic-
tions for sentences with a somewhat simpler – and some-
times much simpler – structure than that of the original
text. In specific cases (such as the "cotX promoter" exam-
ple given above), this enables both versions of AkanePPI
to make correct predictions where they are unable to do so
when the sentence is in its original, more complicated,
form. However, the drop in recall for AkanePPI(B) is con-
sistently high, so in practice this effect does not appear to
be highly significant.

Finally, the effect of using the BANNER NER tagger on the
performance of our simple baseline algorithm is shown in
table 7. As with AkanePPI, the smallest drop in perform-
ance is on AIMed and BioInfer, for which the original per-
formance was lowest. It is also worth noting that recall is
on average no worse than that for AkanePPI, even though

there is no scope for elongated name tagging to be benefi-
cial with our benchmark algorithm.

Performance of the Whatizit protein interaction pipeline
To evaluate the Whatizit protein interaction pipeline, we
adopted a slightly different approach for the reasons given
above. We used un-annotated text as input and then
scored the putative interactions generated by the pipeline
against the gold standard entities and interactions in the
evaluation corpora. In the case of sentences containing
multiple occurrences of the same protein name, the pipe-
line was given full credit for identifying the correct name
even though the precise context was not specified.

Results for the three Whatizit interaction detection meth-
ods – Ppi, Co3 and Co – are given in tables 8, 9 and 10
respectively. These results indicate that the Ppi method
produces very low recall, ranging from 0.3% on IEPA to
4.4% on AIMed (table 8). Although the Co3 approach is
very similar to our Baseline(K) algorithm, it achieves sig-
nificantly lower performance. This is attributable to the
much lower rate of entity detection with Whatizit, a con-
sequence of its requirement that only names it is able to
map to UniProt identifiers are tagged.

Of the three approaches, the simple name co-occurrence
(Co) approach gives the best results. In the case of Co, the
low rate of Whatizit entity detection actually proves bene-
ficial, as it reduces the number of false positive interac-
tions that would otherwise be detected using this naïve
approach.

Conclusion
In this paper we have uncovered some sobering facts
about the current state of automated GPI extraction.
Firstly, in spite of all the research that has been under-
taken to develop relatively sophisticated GPI extraction
methods using grammatical parsers, we have concluded
(after considerable effort and having consulted widely)
that, with the exception of the Whatizit protein interac-
tion pipeline accessed via its web interface, none of the
tools are easy to install and evaluate. Although AkanePPI
performs significantly better than OpenDMAP, what is

Table 7: The effect of using the BANNER entity tagger 
compared to gold-standard entities on the performance 
(precision, recall and F-score) of our simple baseline algorithm, 
Baseline(K).

A B H I (L)

Precision:

With gold-standard entities 22.8 24 54 44.8 53.9

With BANNER 18.4 23.5 32 20 43.8

Δ precision 4.4 0.5 22 24.8 10.1

Recall:

With gold-standard entities 51.5 52.2 66.9 56.4 72

With BANNER 42.1 33.5 49.7 27.5 51.2

Δ recall 9.4 18.7 17.2 28.9 20.8

F-score:

With gold-standard entities 31.6 32.9 59.7 49.9 61.6

With BANNER 25.6 27.6 38.9 23.1 47.2

Δ F-score 6 5.3 20.8 26.8 14.4

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.

Table 8: Performance of the Whatizit protein interaction 
pipeline, Ppi method.

A B H I L

Precision 73.8 58.6 83.3 25.0 1.0

Recall 4.4 1.4 3.2 0.3 1.3

F-score 8.3 2.7 6.1 0.6 2.5

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.
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most startling is that both tools generally perform worse
(in terms of F-score on a range of GPI corpora) than a sim-
ple keyword-based approach using regular expressions.
(We exclude Whatizit from this judgement as its stringent
requirement that only names mapped to UniProt identifi-
ers are tagged makes a fair comparison impossible.) Bet-
ter-performing tools have already been developed (such
as the rule-based RelEx), but are not available to the vast
majority of potential users.

Secondly, we have quantified the effect of using a state-of-
the-art NER tagger on the performance of three GPI extrac-
tion methods when evaluated on standard corpora. A
drop in F-score of over 15 percentage points occurred in
10 out of 15 cases. Moreover, when the performance of
the GPI extraction method is at its best, the typical drop is
even greater – a point that is worth bearing in mind when
reading reports of high-performing GPI methods. For
example, if we take the two best F-scores for each of the
extraction methods, the average drop in F-score with BAN-
NER is more than 20 percentage points.

These results emphasize two points – the urgent need to
make the best tools publicly available, and the need to
carry out realistic evaluations of tools using name taggers
and multiple corpora.

Finally, this paper has identified three areas that may
prove fertile for additional research. Firstly, given the sig-
nificant impact of gene/protein tagging on GPI extraction
performance, we think it worth investigating whether

other gene/protein name taggers produce less significant
drops in performance than BANNER. Although we show
that BANNER is the best available tagger in terms of gen-
eral performance on the gene/protein named entity recog-
nition task, this does not necessarily mean that it is the
best tagger for GPI extraction.

Secondly, our joint error analysis of three tools shows that
very high levels of recall (around 90%) would be achieva-
ble using a system that combined all three of them, sug-
gesting that hybrid systems may prove highly effective.
(Indeed, this is what Whatizit already does in the context
of mapping names to UniProt identifiers.)

Thirdly, our baseline approach using Perl regular expres-
sions was deliberately simple. Given that it performed sur-
prisingly well compared to more sophisticated tools and
that it correctly identifies many interactions not found by
other methods, we believe that it would be worthwhile
devising and evaluating more complicated approaches
that exploit simple regular expressions.
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Table 9: Performance of the Whatizit protein interaction 
pipeline, Co3 method.

A B H I L

Precision 29.3 31.3 24.5 12.4 31.8

Recall 14.5 10.7 15.9 4.6 8.8

F-score 19.4 15.9 19.3 6.7 13.8

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.

Table 10: Performance of the Whatizit protein interaction 
pipeline, Co method.

A B H I L

Precision 21.8 16.2 21.4 10.2 25.3

Recall 52.1 49.8 49.7 42.1 31.4

F-score 30.7 24.4 29.9 16.4 28.0

Corpus abbreviations are as follows: A = AIMed; B = BioInfer; H = 
HPRD50; I = IEPA; L = LLL.
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