56 research outputs found

    Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    Get PDF
    © 2018 International Society for Microbial Ecology All rights reserved. Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature

    Experimental biogeography: the role of environmental gradients in high geographic diversity in Cape Proteaceae

    Get PDF
    One of the fundamental dimensions of biodiversity is the rate of species turnover across geographic distance. The Cape Floristic Region of South Africa has exceptionally high geographic species turnover, much of which is associated with groups of closely related species with mostly or completely non-overlapping distributions. A basic unresolved question about biodiversity in this global hotspot is the relative importance of ecological gradients in generating and maintaining high geographic turnover in the region. We used reciprocal transplant experiments to test the extent to which abiotic environmental factors may limit the distributions of a group of closely related species in the genus Protea (Proteaceae), and thus elevate species turnover in this diverse, iconic family. We tested whether these species have a “home site advantage” in demographic rates (germination, growth, mortality), and also parameterized stage-structured demographic models for the species. Two of the three native species were predicted to have a demographic advantage at their home sites. The models also predicted, however, that species could maintain positive population growth rates at sites beyond their current distribution limits. Thus the experiment suggests that abiotic limitation under current environmental conditions does not fully explain the observed distribution limits or resulting biogeographic pattern. One potentially important mechanism is dispersal limitation, which is consistent with estimates based on genetic data and mechanistic dispersal models, though other mechanisms including competition may also play a role

    Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature.

    Get PDF
    Goalkeepers are typically the last defensive line for soccer teams aiming to minimise goals being conceded, with match rules permitting ball handling within a specific area. Goalkeepers are also involved in initiating some offensive plays, and typically remain in close proximity to the goal line while covering ~ 50% of the match distances of outfield players; hence, the competitive and training demands of goalkeepers are unique to their specialised position. Indeed, isolated performance tests differentiate goalkeepers from outfield players in multiple variables. With a view to informing future research, this review summarised currently available literature reporting goalkeeper responses to: (1) match play (movement and skilled/technical demands) and (2) isolated performance assessments (strength, power, speed, aerobic capacity, joint range of motion). Literature searching and screening processes yielded 26 eligible records and highlighted that goalkeepers covered ~ 4-6 km on match day whilst spending ~ 98% of time at low-movement intensities. The most decisive moments are the 2-10 saves·match-1 performed, which often involve explosive actions (e.g. dives, jumps). Whilst no between-half performance decrements have been observed in professional goalkeepers, possible transient changes over shorter match epochs remain unclear. Isolated performance tests confirm divergent profiles between goalkeepers and outfield players (i.e. superior jump performance, reduced [Formula: see text]2max values, slower sprint times), and the training of soccer goalkeepers is typically completed separately from outfield positions with a focus primarily on technical or explosive drills performed within confined spaces. Additional work is needed to examine the physiological responses to goalkeeper-specific training and match activities to determine the efficacy of current preparatory strategies

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p
    corecore