15 research outputs found

    In vivo catalyzed new-to-nature reactions

    Get PDF
    Bioorthogonal chemistry largely relies on the use of abiotic metals to catalyze new-to-nature reactions in living systems. Over the past decade, metal complexes and metal-encapsulated systems such as nanoparticles have been developed to unravel the reactivity of transition metals, including ruthenium, palladium, iridium, copper, iron, and gold in biological systems. Thanks to these remarkable achievements, abiotic catalysts are able to fluorescently label cells, uncage or form cytotoxic drugs and activate enzymes in cellulo/vivo. Recently, strategies for the delivery of such catalysts to specific cell types, cell compartments or proteins were established. These studies reveal the enormous potential of this emerging field and its application in both medicinal chemistry and in synthetic biology

    "Close-to-Release": Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis

    Get PDF
    Bioorthogonal uncaging reactions offer versatile tools in chemical biology. In recent years, reactions have been developed to proceed efficiently under physiological conditions. We present herein an uncaging reaction that results from ring-closing metathesis (RCM). A caged molecule, tethered to a diolefinic substrate, is released via spontaneous 1,4-elimination following RCM. Using this strategy, which we term "close-to-release", we show that drugs and fluorescent probes are uncaged with fast rates, including in the presence of mammalian cells or in the periplasm of Escherichia coli. We envision that this tool may find applications in chemical biology, bioengineering and medicine

    Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein

    Get PDF
    Artificial metalloenzymes combine a synthetic metallocofactor with a protein scaffold and can catalyze abiotic reactions in vivo. Herein, we report on our efforts to valorize human carbonic anhydrase II as a scaffold for whole-cell transfer hydrogenation. Two platforms were tested: periplasmic compartmentalization and surface display in Escherichia coli. A chemical optimization of an IrCp* cofactor was performed. This led to 90 turnovers in the cell, affording a 69-fold increase in periplasmic product formation over the previously reported, sulfonamide-bearing IrCp* cofactor. These findings highlight the versatility of carbonic anhydrase as a promising scaffold for whole-cell catalysis with artificial metalloenzymes

    Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology

    Get PDF
    The selective hydroxylation of C-H bonds is of great interest to the synthetic community. Both homogeneous catalysts and enzymes offer complementary means to tackle this challenge. Herein, we show that biotinylated Fe(TAML)-complexes (TAML = Tetra Amido Macrocyclic Ligand) can be used as cofactors for incorporation into streptavidin to assemble artificial hydroxylases. Chemo-genetic optimization of both cofactor and streptavidin allowed optimizing the performance of the hydroxylase. Using H; 2; O; 2; as oxidant, up to ∼300 turnovers for the oxidation of benzylic C-H bonds were obtained. Upgrading the ee was achieved by kinetic resolution of the resulting benzylic alcohol to afford up to >98% ee for (; R; )-tetralol. X-ray analysis of artificial hydroxylases highlights critical details of the second coordination sphere around the Fe(TAML) cofactor

    Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm

    Get PDF
    Artificial metalloenzymes (ArMs), which combine an abiotic metal cofactor with a protein scaffold, catalyze various synthetically useful transformations. To complement the natural enzymes' repertoire, effective optimization protocols to improve ArM's performance are required. Here we report on our efforts to optimize the activity of an artificial transfer hydrogenase (ATHase) using Escherichia coli whole cells. For this purpose, we rely on a self-immolative quinolinium substrate which, upon reduction, releases fluorescent umbelliferone, thus allowing efficient screening. Introduction of a loop in the immediate proximity of the Ir-cofactor afforded an ArM with up to 5-fold increase in transfer hydrogenation activity compared to the wild-type ATHase using purified mutants

    Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes

    Get PDF
    The biotin-streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17âEuro¯000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications

    The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway.

    No full text
    The vanadium (V)-nitrogenase of Azotobacter vinelandii catalyses the in vitro conversion of carbon monoxide (CO) to hydrocarbons. Here we show that an A. vinelandii strain expressing the V-nitrogenase is capable of in vivo reduction of CO to ethylene (C2H4), ethane (C2H6) and propane (C3H8). Moreover, we demonstrate that CO is not used as a carbon source for cell growth, being instead reduced to hydrocarbons in a secondary metabolic pathway. These findings suggest a possible role of the ancient nitrogenase as an evolutionary link between the carbon and nitrogen cycles on Earth and establish a solid foundation for biotechnological adaptation of a whole-cell approach to recycling carbon wastes into hydrocarbon products. Thus, this study has several repercussions for evolution-, environment- and energy-related areas
    corecore