15 research outputs found

    Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells

    Get PDF
    Stem cell-based regenerative medicine is one of the most intensively researched medical issues. Pre-clinical studies in a large-animal model, especially in swine or miniature pigs, are highly relevant to human applications. Mesenchymal stem cells (MSCs) have been isolated and expanded from different sources. Objective: This study aimed at isolating and characterizing, for the first time, bone marrow-derived MSCs (BM-MSCs) from a Brazilian minipig (BR1). Also, this aimed to validate a new large-animal model for stem cell-based tissue engineering. Material and Methods: Bone marrow (BM) was aspirated from the posterior iliac crest of twelve adult male BR1 under general anesthesia. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, surface marker expression, and cellular differentiation were examined. The immunophenotypic profile was determined by flow cytometry. The differentiation potential was assessed by cytological staining and by RT-PCR. Results: MSCs were present in all minipig BM samples. These cells showed fibroblastic morphology and were positive for the surface markers CD90 (88.6%), CD29 (89.8%), CD44 (86.9%) and negative for CD34 (1.61%), CD45 (1.83%), CD14 (1.77%) and MHC-II (2.69%). MSCs were differentiated into adipocytes, osteoblasts, and chondroblasts as demonstrated by the presence of lipidic-rich vacuoles, the mineralized extracellular matrix, and the great presence of glycosaminoglycans, respectively. The higher gene expression of adipocyte fatty-acid binding protein (AP2), alkaline phosphatase (ALP) and collagen type 2 (COLII) also confirmed the trilineage differentiation (p<0.001, p<0.001, p=0.031; respectively). Conclusions: The isolation, cultivation, and differentiation of BM-MSCs from BR1 makes this animal eligible as a useful large-animal model for stem cell-based studies in Brazil

    Downregulation of the protein synthesis machinery is a major regulatory event during early adipogenic differentiation of human adipose-derived stromal cells

    Get PDF
    Commitment of adult stem cells involves the activation of specific gene networks regulated from transcription to protein synthesis. Here, we used ribosome profiling to identify mRNAs regulated at the translational level, through both differential association to polysomes and modulation of their translational rates. We observed that translational regulation during the differentiation of human adipose-derived stromal cells (hASCs, also known as adipose-derived mesenchymal stem cells), a subset of which are stem cells, to adipocytes was a major regulatory event. hASCs showed a significant reduction of whole protein synthesis after adipogenic induction and a downregulation of the expression and translational efficiency of ribosomal proteins. Additionally, focal adhesion and cytoskeletal proteins were downregulated at the translational level. This negative regulation of the essential biological functions of hASCs resulted in a reduction in cell size and the potential of hASCs to migrate. We analyzed whether the inactivation of key translation initiation factors was involved in this observed major repression of translation. We showed that there was an increase in the hypo phosphorylated forms of 4E-BP1, a negative regulator of translation, during early adipogenesis. Our results showed that extensive translational regulation occurred during the early stage of the adipogenic differentiation of hASCs

    Metabolic switches during the first steps of adipogenic stem cells differentiation

    Get PDF
    AbstractThe understanding of metabolism during cell proliferation and commitment provides a greater insight into the basic biology of cells, allowing future applications. Here we evaluated the energy and oxidative changes during the early adipogenic differentiation of human adipose tissue-derived stromal cells (hASCs). hASCs were maintained under differentiation conditions during 3 and 7days. Oxygen consumption, mitochondrial mass and membrane potential, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) and catalase activities, non-protein thiols (NPT) concentration and lipid peroxidation were analyzed. We observed that 7days of adipogenic induction are required to stimulate cells to consume more oxygen and increase mitochondrial activity, indicating organelle maturation and a transition from glycolytic to oxidative energy metabolism. ROS production was only increased after 3days and may be involved in the differentiation commitment. ROS source was not only the mitochondria and we suggest that NOX proteins are related to ROS generation and therefore adipogenic commitment. ROS production did not change after 7days, but an increased activity of catalase and NPT concentration as well as a decreased lipid peroxidation were observed. Thus, a short period of differentiation induction is able to change the energetic and oxidative metabolic profile of hASCs and stimulate cytoprotection processes
    corecore