15 research outputs found
Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells
Stem cell-based regenerative medicine is one of the most intensively researched medical
issues. Pre-clinical studies in a large-animal model, especially in swine or miniature pigs, are highly relevant to human applications. Mesenchymal stem cells (MSCs) have been isolated and expanded from different sources. Objective: This study aimed at isolating and
characterizing, for the first time, bone marrow-derived MSCs (BM-MSCs) from a Brazilian minipig (BR1). Also, this aimed to validate a new large-animal model for stem cell-based tissue engineering. Material and Methods: Bone marrow (BM) was aspirated from the posterior iliac crest of twelve adult male BR1 under general anesthesia. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, surface marker expression, and cellular differentiation were examined. The immunophenotypic profile was determined by flow cytometry. The differentiation potential was assessed by cytological staining and by RT-PCR. Results: MSCs were present in all minipig BM samples. These cells showed fibroblastic morphology and were positive for the surface markers CD90
(88.6%), CD29 (89.8%), CD44 (86.9%) and negative for CD34 (1.61%), CD45 (1.83%),
CD14 (1.77%) and MHC-II (2.69%). MSCs were differentiated into adipocytes, osteoblasts,
and chondroblasts as demonstrated by the presence of lipidic-rich vacuoles, the mineralized extracellular matrix, and the great presence of glycosaminoglycans, respectively. The higher gene expression of adipocyte fatty-acid binding protein (AP2), alkaline phosphatase (ALP) and collagen type 2 (COLII) also confirmed the trilineage differentiation (p<0.001, p<0.001, p=0.031; respectively). Conclusions: The isolation, cultivation, and differentiation
of BM-MSCs from BR1 makes this animal eligible as a useful large-animal model for stem cell-based studies in Brazil
Recommended from our members
Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Abstract: Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
Recommended from our members
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Funder: Breast Cancer Research Foundation (BCRF); doi: https://doi.org/10.13039/100001006Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Recommended from our members
Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls
Downregulation of the protein synthesis machinery is a major regulatory event during early adipogenic differentiation of human adipose-derived stromal cells
Commitment of adult stem cells involves the activation of specific gene networks regulated from transcription to protein synthesis. Here, we used ribosome profiling to identify mRNAs regulated at the translational level, through both differential association to polysomes and modulation of their translational rates. We observed that translational regulation during the differentiation of human adipose-derived stromal cells (hASCs, also known as adipose-derived mesenchymal stem cells), a subset of which are stem cells, to adipocytes was a major regulatory event. hASCs showed a significant reduction of whole protein synthesis after adipogenic induction and a downregulation of the expression and translational efficiency of ribosomal proteins. Additionally, focal adhesion and cytoskeletal proteins were downregulated at the translational level. This negative regulation of the essential biological functions of hASCs resulted in a reduction in cell size and the potential of hASCs to migrate.
We analyzed whether the inactivation of key translation initiation factors was involved in this observed major repression of translation. We showed that there was an increase in the hypo phosphorylated forms of 4E-BP1, a negative regulator of translation, during early adipogenesis. Our results showed that extensive translational regulation occurred during the early stage of the adipogenic differentiation of hASCs
Metabolic switches during the first steps of adipogenic stem cells differentiation
AbstractThe understanding of metabolism during cell proliferation and commitment provides a greater insight into the basic biology of cells, allowing future applications. Here we evaluated the energy and oxidative changes during the early adipogenic differentiation of human adipose tissue-derived stromal cells (hASCs). hASCs were maintained under differentiation conditions during 3 and 7days. Oxygen consumption, mitochondrial mass and membrane potential, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) and catalase activities, non-protein thiols (NPT) concentration and lipid peroxidation were analyzed. We observed that 7days of adipogenic induction are required to stimulate cells to consume more oxygen and increase mitochondrial activity, indicating organelle maturation and a transition from glycolytic to oxidative energy metabolism. ROS production was only increased after 3days and may be involved in the differentiation commitment. ROS source was not only the mitochondria and we suggest that NOX proteins are related to ROS generation and therefore adipogenic commitment. ROS production did not change after 7days, but an increased activity of catalase and NPT concentration as well as a decreased lipid peroxidation were observed. Thus, a short period of differentiation induction is able to change the energetic and oxidative metabolic profile of hASCs and stimulate cytoprotection processes