18 research outputs found

    NOD-like receptors and inflammation

    Get PDF
    The nucleotide-binding and oligomerization domain, leucine-rich repeat (also known as NOD-like receptors, both abbreviated to NLR) family of intracellular pathogen recognition receptors are increasingly being recognized to play a pivotal role in the pathogenesis of a number of rare monogenic diseases, as well as some more common polygenic conditions. Bacterial wall constituents and other cellular stressor molecules are recognized by a range of NLRs, which leads to activation of the innate immune response and upregulation of key proinflammatory pathways, such as IL-1β production and translocation of nuclear factor-κB to the nucleus. These signalling pathways are increasingly being targeted as potential sites for new therapies. This review discusses the role played by NLRs in a variety of inflammatory diseases and describes the remarkable success to date of these therapeutic agents in treating some of the disorders associated with aberrant NLR function

    Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense Zone.

    Get PDF
    Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense

    B lymphocyte-derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury

    No full text
    Acute kidney injury (AKI) is a serious condition affecting one fifth of hospital inpatients. B lymphocytes have immunological functions beyond Ab production and may produce cytokines and chemokines that modulate inflammation. In this study, we investigated leukocyte responses in a mouse model of AKI and observed an increase in circulating and kidney B cells, particularly a B220low subset, following AKI.We found that B cells produce the chemokine CCL7, with the potential to facilitate neutrophil and monocyte recruitment to the injured kidney. Siglec-G-deficient mice, which have increased numbers of B220low innate B cells and a lower B cell activation threshold, had increased Ccl7 transcripts, increased neutrophil and monocyte numbers in the kidney, and more severe AKI. CCL7 blockade in mice reduced myeloid cell infiltration into the kidney and ameliorated AKI. In two independent cohorts of human patients with AKI, we observed significantly higher CCL7 transcripts compared with controls, and in a third cohort, we observed an increase in urinary CCL7 levels in AKI, supporting the clinical importance of this pathway. Together, our data suggest that B cells contribute to early sterile inflammation in AKI via the production of leukocyte-recruiting Chemokines
    corecore