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Summary 

Lower urinary tract infections are among the commonest human bacterial infections but 

extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine 

flow, that prevent the ascent of bladder microbes. Here we show that the regional hypersalinity, 

required for the kidney’s urine-concentrating function, instructs epithelial cells to produce 

chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. 

This hypersaline environment also increases the intrinsic bactericidal and neutrophil 

chemotactic activities of MNPs to generate a zone of defence. Because MNP positioning and 

function are dynamically regulated by the renal salt gradient, we find that patients with urinary 

concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory 

role for the homeostatic function of a vital organ in optimizing tissue defence. 
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Introduction 
Tissue-specific immunity is shaped by the local milieu. In organ systems that interface with the 

environment, including the skin and gastrointestinal tract, exogenous signals generated by 

commensal bacteria or diet profoundly influence resident immune cells (Naik et al., 2012) and 

may even give rise to regional compartmentalization of immune cell subsets (Atarashi et al., 

2013; Ivanov et al., 2009). In the gut, microbial cues are also critical for the homeostatic 

replenishment of resident macrophages from the circulating monocyte pool (Bain et al., 2014). 

In non-interfacing tissues, endogenous signals such as interstitial osmolality may influence the 

immune landscape. Indeed, increased extracellular sodium skews CD4 T cells to a Th17 

phenotype (Kleinewietfeld et al., 2013; Wu et al., 2013).  

 

Tissue epithelial cells play an important role as environmental sensors and contribute to local 

immune responses directly or via cross-talk with local immune cells (Machnik et al., 2009; 

Olszak et al., 2014; Sano et al., 2015; Unkel et al., 2012). In addition, environmental cues may 

be detected by tissue-resident immune cells, including mononuclear phagocytes (MNPs) 

(Jantsch et al., 2015; Kinnebrew et al., 2012; Naik et al., 2015). All organs contain a network of 

MNPs, comprising macrophages and dendritic cells (DCs), poised to respond to local stimuli. 

Several tissue DC and macrophage subsets have been described in both mice and humans 

based on surface markers and ontogeny (Guilliams et al., 2014; Varol et al., 2015). In humans, 

CD11c and MHC class II-positive cells comprise two broad subsets of tissue-resident MNPs, 

based on the presence or absence of CD14. CD14- cells represent classical myeloid DC 

(mDC), with the capacity to migrate and present or cross-present antigen, whilst CD14+ cells 

are macrophage-like with an avid phagocytic capacity (Haniffa et al., 2012; Segura et al., 2012) 

and arise from circulating monocytes (McGovern et al., 2014). 

 

The mammalian kidney presents a unique environment for resident MNPs, with extreme 

hypersalinity in the medulla, generated to achieve its homeostatic function of water 

reabsorption (Koepsell et al., 1974). The kidney is also a dynamic environment, with variation in 

the magnitude of the intrarenal sodium gradient depending on physiological need. In response 

to dehydration and elevated serum osmolality, vasopressin secreted by the posterior pituitary 

generates a further increase in interstitial sodium in the medulla, and promotes the 

reabsorption of free water, restoring normovolaemia (Knepper et al., 2015; Levitin et al., 1962). 

The phylogeny of urine concentrating mechanisms is temporally related to the evolution of the 

urinary bladder (Kondo et al., 2006), which allows for controlled voiding but produces a static 

fluid collection in which bacteria can multiply and ascend into the kidney. Urinary tract 

infections (UTIs) are most frequently caused by uropathogenic Escherichia coli (UPEC) and 

represent one of the commonest bacterial infections in humans. Notably, UTIs predominantly 
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affect the lower urinary tract (Foxman, 2014). This has been attributed to mechanical forces, 

such as urine flow, that prevent the ascent of microbes from the bladder, but whether additional 

protective mechanisms operate in the kidney is unknown.  

 

Here we show that in the human kidney, the high interstitial sodium concentration in the 

medulla generates a defence zone with enhanced antibacterial immunity in the area first 

encountered by bacteria ascending from the bladder. Medullary hypersalinity provides a cue to 

renal tubular epithelial cells, causing NFAT5-dependent production of chemokines that 

orchestrate the recruitment of circulating monocyte-derived MNPs into the region, and this 

effect is augmented by the presence of E.coli lipopolysaccharide (LPS). These CD14+ MNPs 

are adept at phagocytosing UPEC and their bactericidal and neutrophil chemotactic function 

further increased by hypersalinity. Using mouse models, we show that medullary recruitment of 

monocyte-derived MNPs is NFAT5 and CCL2-dependent. Finally, we demonstrate the in vivo 

relevance of these observations, where disruption of the renal sodium gradient in patients and 

mice, leads to aberrant chemokine expression, a reduction in monocyte recruitment and 

impaired MNP localization to the medulla, and increased susceptibility to pyelonephritis. 

 

This elegant mechanism provides a way to calibrate tissue defence with infectious risk; by 

utilizing the environmental signal required for urine concentration to generate a defence zone, 

the immune system reinforces the most vulnerable region of the kidney when it is at greatest 

risk.  During dehydration, the physical conditions favour infection due to reduced urine flow, 

with less mechanical propulsion of bacteria away from the kidney.  Our data suggest that, in 

just such conditions, the heightened medullary sodium concentration ensures local antibacterial 

defence is at its most efficient. We therefore reveal a unique mechanism whereby changes in 

the tissue environment generated by the homeostatic function of the organ stimulate epithelial-

MNP cross-talk to optimize tissue defence. 
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Results 

 
Anti-bacterial CD14+ MNPs are enriched in the renal medulla 
The mammalian kidney is a unique environment for tissue-resident cells with marked regional 

differences between the cortex where filtrate is generated, and the medulla where water is 

reabsorbed. Given data showing the importance of macrophages and DCs in defence against 

UTI in murine models (Carey et al., 2016; Tittel et al., 2011), we sought to characterize MNPs 

in the human kidney and to examine whether there were micro-anatomical differences in their 

distribution. Analysis of human renal tissue revealed CD45+/Lineage-/CD11c+/MHCIIhi MNPs by 

flow cytometry (Figure 1A, B) and confocal microscopy (Figure 1C). This population could be 

further subdivided into CD14+ and CD14- subsets, of which the CD14+ subset was the more 

numerous (Figure 1B) and were CD11b+, CD64+ and CD68- (Figure S1A), as observed in 

CD14+ MNPs in the skin (McGovern et al. 2014). When comparing samples from cortex and 

medulla, we observed an enrichment of CD14+ cells within the medulla (Figure 1D, E). To 

ensure that this was not related to differential efficacy of tissue dissociation, we incubated 

cortical and medullary explants ex vivo; significantly more CD14+ MNPs migrated from medulla 

compared with cortex (Figure 1E, S1B). The distribution of CD14+ DCs was not impacted by 

patient age, gender, kidney function or time in cold storage prior to analysis (Figure S1C). 

 

The mammalian kidney is at particular risk from bacteria ascending from the urinary bladder to 

the medulla and the anatomical location of CD14+ MNPs in the human kidney would place 

them in a prime position to combat such infections. We therefore investigated the efficacy of 

CD14+ MNPs in defence against UPEC, the most common cause of UTI (Foxman, 2014). 

CD14+ MNPs from human kidneys showed significantly greater phagocytosis of fluorescently 

labelled UPEC compared with CD14- cells and 4oC controls (Figure 1F and Figure S1D,E). 

They also produced more of the neutrophil-recruiting chemokine IL8 (Figure 1G) in response to 

UPEC stimulation than CD14- MNPs, and more TNF-D and IL-6 (Figure 1H), both of which 

have been shown to augment neutrophil responses to UPEC (Godaly et al., 2001; Steadman et 

al., 1991). Consistent with this, supernatants obtained from medullary cell suspensions 

stimulated with UPEC enhanced neutrophil phagocytosis and myeloperoxidase secretion 

compared with cortical supernatants (Figure 1I), an effect to which CD11c+ cells substantially 

contributed (Figure 1J). Together, these data show an enrichment of antibacterial CD14+ 

MNPs in the human renal medulla, that following exposure to UPEC, produce IL8 that can 

potentially mobilise neutrophils, and neutrophil-activating cytokines to combat ascending 

infection. 

 

Variation in chemokine expression in different regions of the kidney  
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Chemokines play a critical role in driving MNP migration and localization (Randolph et al., 

2008). We therefore determined whether there was variability in chemokine expression in 

different regions of the kidney. Transcriptomic analysis of human kidneys showed marked 

micro-anatomical variation in several chemokines that might influence immune cell positioning 

(Figure 2A). We further investigated CX3CL1 and CCL2 (MCP1), since these chemokines are 

known to impact MNP migration (Ancuta et al., 2003; Kuziel et al., 1997). In addition, the 

receptors for these two chemokines were the only ones expressed to any significant extent on 

kidney CD14+ MNPs (Figure 2B and Fig S2A). We therefore examined CX3CL1 and CCL2 

transcript levels in human kidneys by rtPCR and confirmed a 2 to 8 fold increase in the medulla 

compared with the cortex (Figure 2C). Confocal imaging demonstrated CX3CL1 protein within 

medullary tubular epithelial cells, at a significantly higher level than that in cortical tubular cells 

(Figure 2D, E).  CCL2 transcripts were also higher in isolated tubular epithelial cell sorted from 

the medulla compared with the cortex (Figure S2B). To determine the functional significance of 

these observations, we performed an ex vivo migration assay, incubating blocks of human 

kidney in cell culture medium with or without recombinant CX3CL1 or CCL2. Addition of either 

chemokine increased migration of CD14+ MNPs (Figure 2F-G). These data suggest that local 

CX3CL1 and CCL2 attract CD14+ MNPs to the human renal medulla. 

 

Environmental hypersalinity instructs NFAT5-dependent chemokine secretion by kidney 
epithelial cells  

Given the importance of epithelial cells in sensing environmental cues in non-renal tissues 

(Machnik et al., 2009; Olszak et al., 2014; Sano et al., 2015; Unkel et al., 2012), we next 

examined how high extracellular sodium concentration might influence renal tubular epithelial 

cells. In particular we asked whether a high salt environment might promote their secretion of 

chemokines. In order to recapitulate the extreme extracellular sodium concentration in the 

medulla (Gottschalk and Mylle, 1959) (which may vary between 250mmol/L and 400 mmol/L 

depending on hydration), we cultured a human renal tubular epithelial cell line, HK2, with 

standard medium (containing 130 mmol/L sodium) supplemented with up to 120 mmol/L of 

additional sodium chloride.  We observed a significant increase in both CCL2 and CX3CL1 in 

the presence of salt, an effect augmented by the presence of E. coli LPS (Figure 3A). The 

increase in CCL2 and CX3CL1 transcripts and in CCL2 and CX3CL1 secretion was specific to 

sodium, was not observed when tubular cells were cultured with an osmolar control (mannitol, 

Figure S3A) and was not associated with an increase in tubular cell death (Figure S3B). 

HEK293 T cells also produced CCL2 and CX3CL1 in response to increasing extracellular 

sodium (Figure S3C). 

NFAT5 (TonEBP) is a ubiquitous transcription factor that is involved in cellular adaptation to 

hyperosmolarity (Ho, 2006). In support of a role for this pathway in mediating the effects of 
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hypersalinity on renal tubular cells, we observed increased expression of NFAT5, as well as 

one of its targets SLC5A3 (a sodium/myoinositol channel) (Klaus et al., 2008) in the renal 

medulla compared with the cortex (Figure 3B-D). Furthermore, NFAT5 knockdown in human 

kidney epithelial cells significantly attenuated the sodium-dependent increase in chemokine 

production (Figure 3E and Figure S3D). NFAT5 activation involves proteasomal processing and 

phosphorylation by kinases, including p38 MAPK (Kojima et al., 2010), which was also 

upregulated in the medulla (Figure 3B).  Inhibition of the proteasome or p38 function also 

abrogated salt-dependent chemokine production by renal tubular epithelial cells  (Figure 3F), 

confirming the importance of NFAT5 in mediating the epithelial cell response to extracellular 

sodium. 

 

Disruption of the renal sodium gradient leads to aberrant chemokine production and 
MNP localization 
We next sought to determine if changes in the renal sodium gradient would impact chemokine 

production by epithelial cells and the subsequent localization of CD14+ MNPs. As noted 

previously, vasopressin (anti-diuretic hormone (ADH)) promotes water reabsorption in the 

kidney and increases the medullary sodium concentration (Levitin et al., 1962).  Secretion of 

vasopressin by the pituitary may be severely impaired in patients with head injury, leading to a 

failure in urine concentration and subsequent reduction in the renal sodium gradient (Levitin et 

al., 1962), a condition known as diabetes insipidus (DI).  We examined human kidney tissue 

from patients with DI (Figure S4A) and observed that NFAT5 was no longer highly expressed in 

the medulla compared with the cortex (Figure 4A), as we had observed in controls (Figure 3C), 

confirming a loss of the intrarenal sodium gradient in patients with DI.  We also observed a loss 

of differential expression of CX3CL1 and CCL2 between cortex and medulla (Figure 4B and 

Figure S4B), and fewer CD14+ MNPs in the medulla (Figure 4C).  Of note, patients with DI 

were comparable to controls in terms of prior drug therapy, age, gender, kidney function, time 

in cold storage, co-morbidities, and inflammatory markers (Figure S4C). These data 

demonstrate that in the absence of medullary hypersalinity, there is a loss of intrarenal 

chemokine gradient and a reduction in CD14+ MNPs in the medulla. 

 

To confirm the importance of the renal sodium gradient in positioning kidney MNPs, we 

examined mouse kidneys. Using confocal microscopy and flow cytometric analysis, we 

observed an asymmetrical distribution of MNPs, with more CD11c+ cells in the cortex and an 

enrichment of CD11bhiF4/80+ MNPs in the medulla and pelvis (designated MNP2, Figure 4D-

F). As in human kidneys, we observed a higher level of Ccl2 transcripts in the medulla of 

murine kidneys compared with the cortex (Figure 4G). Although CX3CL1 is differentially 

expressed in human kidneys, with high levels in medulla, we did not consider this axis to be of 
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relevance in murine kidneys since published data demonstrate that CX3CR1+ MNPs in mouse 

kidney are preferentially located in the cortex, and that these cells are dispensable for defence 

against infection (Hochheiser et al., 2013). 

 

We investigated the impact of medullary hypersalinity on the intrarenal CCL2 gradient and the 

differential distribution of kidney MNPs by inducing DI in mice using tolvaptan (a vasopressin 

receptor 2 antagonist (Berl, 2015) or demeclocycline (which reduces vasopressin receptor 

expression and signaling (Kortenoeven et al., 2013)). This disrupted the cortical location of 

CD11c+ MNPs (Figure S4D,E), led to a reduction in the number of medullary CD11bhiF4/80+ 

MNP2 (Figure 4H) and the abrogation of the intrarenal CCL2 gradient (Figure 4I). Similarly, in 

neonatal mice, that lack urine concentrating ability (Edwards et al., 1981) CD11c+ MNPs were 

uniformly distributed between the cortex and medulla until 18-24 days of age (Figure S4F). 

Differential localization of MNPs to the different anatomical compartments within the neonatal 

kidney occurred in parallel with increasing urine osmolality and sodium (Figure S4G, H).  To 

confirm the importance of the CCL2-CCR2 axis in mediating MNP positioning in the medulla we 

first neutralized CCL2. This resulted in a loss of the medullary enrichment of CD11bhiF4/80+ 

MNP2 (Figure S4I), as did genetic deletion of CCR2 (Figure 4J, K). We also observed that 

CD11bhi F4/80+ MNP2 were reduced within the medulla of Nfat5-deficient mice, (generated by 

crossing Nfat5fl/fl mice with animals with a tamoxifen-inducible derivative of the Cre-

recombinase under the control of the UbiqitinC promoter, Figure 4L, M) as were renal Ccl2 

transcript levels (Figure S4J). Taken together, the human and mouse data show that the 

medullary positioning of specific MNP subsets is orchestrated by the regional hypersalinity via 

NFAT5-dependent production of CCL2. 

 

NFAT5-dependent CCL2 promotes monocyte recruitment to the renal medulla 
Ki67 staining of CD11bhiF4/80+ MNP2 in the cortex and medulla demonstrated no significant 

increase in proliferation in medullary positioned cells (Figure S5A). Since CD14+ MNP in 

human skin are thought to be monocyte-derived (McGovern et al., 2014), we sought to 

determine if circulating monocytes were preferentially recruited into the kidney medulla 

compared with the cortex, contributing to an enrichment in monocyte-derived MNPs in the 

medulla. CD45.1 monocytes were transferred intravenously into CD45.2 recipient mice and the 

kidneys harvested after 6 days (Figure 5A). A higher number of CD45.1+ cells were observed 

in the medulla compared with the cortex, and this differential recruitment was lost in mice with 

DI, demonstrating the importance of the intra-renal sodium gradient for monocyte recruitment 

(Figure 5A).  To determine whether medullary monocyte recruitment was CCL2-dependent, we 

administered a CCL2-neutralising antibody prior to monocyte transfer. This led to a reduction in 

the preferential recruitment of circulating monocytes to the kidney medulla (Figure 5B). To 



9 
 

confirm the importance of the CCL2-CCR2 axis in monocyte recruitment to the medulla, we 

transferred congenically marked WT and Ccr2-deficient monocytes into a WT recipient and 

after 1 week, assessed medullary monocyte-derived cells (Figure 5C). This demonstrated an 

enrichment of WT monocyte-derived cells in the medulla, but few Ccr2-deficient cells in 

medulla (Figure 5D-E). We next assessed the impact of Nfat5 deficiency on kidney chemokine 

production and monocyte recruitment using Nfat5fl/fl Ert2-Cre mice (Figure 5F). Fourteen days 

following the initial administration of tamoxifen, we observed a variable but significant reduction 

in Nfat5 transcripts in the kidney (Figure S5B) but a striking correlation between Nfat5 and Ccl2 

levels (Figure 5G). In keeping with this, there was a significant reduction in the recruitment of 

congenically marked WT monocytes to the kidneys of tamoxifen-treated Nfat5fl/fl Ert2-Cre mice 

(Figure 5H). Together, these data suggest that the high sodium concentration in the renal 

medulla stimulates NFAT5-dependent production of CCL2 that acts to recruit circulating 

monocytes into the region in a CCR2-dependent manner, and that this preferential recruitment 

contributes to the medullary positioning of MNP2.  

 

Medullary hypersalinity enhances the anti-bacterial function of CD14+ MNPs 
Since tissue specific environmental cues can directly impact resident MNPs (Jantsch et al., 

2015; Kinnebrew et al., 2012; Naik et al., 2015) and immune cell function may be significantly 

influenced by extracellular sodium concentration (Ip and Medzhitov, 2015; Jantsch et al., 2015; 

Junger et al., 1994; Kleinewietfeld et al., 2013; Shapiro and Dinarello, 1995; Wu et al., 2013; 

Zhang et al., 2015), we asked whether the high salt environment of the medulla might enhance 

CD14+ MNP function. When comparing cortical and medullary CD14+ MNPs, we observed 

increased phagocytosis of UPEC and IL8 production in medullary MNPs (Figure 6A-B). In vitro, 

increasing extracellular sodium resulted in enhanced UPEC phagocytosis, bacterial killing and 

cytokine production in human (Figure 6C-F and Figure S6A) and murine MNPs (Figure S6B, C) 

and this was dependent on NFAT5 (Figure 6G). Furthermore, extracellular hypersalinity also 

improved the sentinel function of MNPs, leading to enhanced “seek behaviour” with more active 

dendrite extension and a greater area of scanning in MNPs incubated with high salt (Figure 

6H). These data show that the high medullary sodium generates a zone that not only attracts 

MNPs specialized in antibacterial defence, but also augments their function.   

 

Loss of intrarenal sodium gradient results in susceptibility to pyelonephritis 
Given the impact of the high sodium environment of the renal medulla on MNP localization in 

vivo, and on their antibacterial function in vitro, we hypothesized that disruption of the renal 

sodium gradient would impair the medullary defence zone and increase susceptibility to 

pyelonephritis. Mice treated with tolvaptan or demeclocycline for 7 days to induce DI had 

significantly higher bacterial load, neutrophil infiltration and abscess formation within the kidney 
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following intravesical challenge with UPEC (Figure 7A, B and Figure S7A-B). Importantly, this 

pharmacological abrogation of the renal sodium gradient also resulted in a higher incidence of 

bacteraemia and death (Figure 7C).  

 

The induction of DI resulted in the loss of the intrarenal CCL2 gradient (Figure 4I) and a 

reduction in the localization of monocyte-derived MNPs to the medulla (Figure 4H). To assess 

the importance of CCL2-dependent positioning of medullary MNPs in defence against 

urosepsis we treated mice with a CCL2-neutralising antibody for 6 days prior to induction of 

UTI. This resulted in increased severity of infection (Figure 7D). Similarly Ccr2-deficient mice 

also had more severe infection following UPEC challenge (Figure 7E).  

 

We had observed that NFAT5 was required for salt-dependent chemokine production by 

human renal tubular cells in vitro (Figure 3A) and the medullary recruitment of monocyte-

derived MNPs in vivo (Figure 4L and 5E).  We therefore asked whether NFAT5-dependent 

processes were important in defence against kidney infection in vivo. We observed an inverse 

correlation between kidney Nfat5 levels and the number of kidney CFUs cultured from the 

kidneys of mice with DI following UPEC challenge (Figure 7F).  To confirm the importance of 

NFAT5 on the outcome of UTI in vivo, we treated mice with lithium, which is known to reduce 

NFAT5 protein expression in kidney tubular cells in hyperosmolar conditions and cause DI 

(Kuper et al., 2015). Mice with a lithium-induced reduction in renal Nfat5 expression (Figure 

S7C) demonstrated worse outcomes following UPEC challenge, with increased pyelonephritis, 

bacteraemia and death (Figure 7G). Similarly, tamoxifen-treated Nfat5fl/fl Ert2-cre mice also had 

increased pyelonephritis and kidney CFUs compared with controls (Figure 7H) 

 

In humans, pharmacological induction of DI with tolvaptan has been used to slow cyst growth in 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) (Higashihara et al., 2011). A dose-

dependent increase in the frequency of UTI was observed in patients with ADPKD treated with 

tolvaptan (Higashihara et al., 2011) (Figure 7I).  We next investigated the incidence of UTI in 

patients with sickle cell disease (SCD), where thrombosis of the medullary vasa recta results in 

an inability to maintain a renal sodium gradient or concentrate urine (Hatch et al., 1967; Statius 

van Eps et al., 1970). Our meta-analysis showed an increased frequency of UTIs in SCD 

patients compared with controls (Figure 7J and Figure S7D).  Finally, in organ donors with DI 

(in which we had shown a reduction in medullary NFAT5, CX3CL1 and CCL2 expression, and 

in the number of CD14+ MNPs, Figure 4A-D) there was an increased frequency of bacterial 

growth from protocol ureteric cultures compared with non-DI donors (Figure 7K and Figure 

S7E), despite the fact that high urine flow is thought to protect from UTI by promoting the 

physical expulsion of bacteria away from the kidney.  Thus, in a murine model of UTI and in 
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patients with ADPKD, pharmacological disruption of the sodium gradient increases 

susceptibility to infection. Similarly, in patients with pathological disruption of the sodium 

gradient due to nephrogenic (SCD) or cranial (organ donors) DI, an increased frequency of UTI 

was observed. 
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Discussion 
Tissue-specific cues orchestrate the anatomical position of resident immune cells, to optimize 

function. To date, this paradigm has been best described in organ systems interfacing with the 

environment, such as skin or the gastrointestinal tract, where colonizing commensal bacteria 

provide signals to orientate immune cells and compartmentalize immune responses. In the 

skin, DCs localize to commensal-rich appendages such as hair follicles, from where they may 

be able to directly sample microbial products (Naik et al., 2015; Naik et al., 2012). In the gut, 

regional differences in the type of local commensal leads to an expansion of T-helper-17 cells 

(Th17) or regulatory T cell populations within the ileum and colon respectively (Atarashi et al., 

2013; Ivanov et al., 2009). The microbiota is also required for the constant recruitment of 

intestinal macrophages from circulating monocytes (Bain et al., 2014). Here we describe how 

the extreme electrolyte concentration generated within a micro-anatomical region of the kidney, 

is similarly used to recruit and compartmentalize functionally-specialized MNPs to the renal 

medulla. 

 

Although epithelial cells are not conventionally considered to be immune effectors, there is 

increasing evidence that they are important tissue sensors that can be influenced by 

environmental cues to have direct immune activity (Olszak et al., 2014) and to communicate 

with local immune cells. Such communication may optimize immune cell function, for example, 

in the ileum, epithelial production of serum amyloid A induces IL17A expression in Th17 cells 

(Sano et al., 2015). Alternatively, epithelial cells may dictate immune cell localization; in the 

murine lung, alveolar epithelial cells secrete GM-CSF that is required for the homeostatic 

presence of CD103+ DCs in the lung parenchyma and for the recruitment of CD11b+ and 

monocyte-derived DCs during infection (Unkel et al., 2012). Here we identify epithelial:MNP 

cross-talk in the human kidney, whereby tubular epithelial cells orchestrate the recruitment of 

monocyte-derived CD14+ MNPs to the medulla via the production of CCL2. This mirrors the 

homeostatic replenishment of intestinal macrophages from the circulating monocyte pool that is 

microbiota-dependent (Bain et al., 2014).  However, in the kidney, the local environmental 

signal is interstitial sodium rather than a microbial cue. The fact that chemokine production can 

be further augmented by exposure to E. coli LPS supports the importance of kidney epithelial 

cells in generating a dynamic medullary defence zone, and controlling its magnitude in-line with 

concurrent immunological information.  

 

Although, in addition to CCL2, we also observed an increase in CX3CL1 expression and 

CD14+CX3CR1+ MNPs in human kidney medulla, and in HK2 cells cultured with increasing 

sodium, we did not interrogate this axis in mice because previous studies have shown that 

CX3CR1+ MNPs in the mouse kidney are enriched in the cortex rather than the medulla 
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(Hochheiser et al., 2013). This demonstrates that the precise chemokines that determine MNP 

localization in the kidney in human and mouse may differ and illustrates that mouse models do 

not always provide a read-out relevant to the human.  Furthermore, although HK2 cells are a 

human renal proximal tubular cell line rather than primary human tubular epithelial cells, with 

the known limitations of cell lines, none the less, the data generated support the importance of 

extracellular sodium concentration and NFAT5 in driving differences in chemokine expression 

observed between cortex and medulla. 

 

A number of reports suggest that extracellular sodium may impact immune cell function. In the 

adaptive immune system, an increase in extracellular sodium of 40 mmol/L above baseline can 

augment the induction of Th17 cells and the suppressive capacity of regulatory T cells 

(Hernandez et al., 2015; Kleinewietfeld et al., 2013; Wu et al., 2013). In MNPs high salt may 

increase macrophage cytokine production in vitro (Ip and Medzhitov, 2015; Junger et al., 1994; 

Shapiro and Dinarello, 1995; Zhang et al., 2015), as well as the response of skin macrophages 

to the protozoan parasite Leishmania in vivo (Jantsch et al., 2015). The medulla of the kidney is 

an extreme hypersaline environment (Gottschalk and Mylle, 1959) for immune cells, with 

extracellular sodium concentrations far higher than those described in lymphoid tissue or skin 

(Jantsch et al., 2015). We demonstrate that in this zone of hypersalinity the antibacterial 

function of local MNPs is enhanced, with increased UPEC phagocytosis, bacterial killing and 

cytokine production, including the neutrophil chemoattractant IL8 (CXCL8).  The latter is of 

particular significance in the context of UTI, since neutrophils are recruited to the kidney during 

ascending infection (Godaly et al., 2001) and this is critical for effective defence, as evidenced 

by studies demonstrating that polymorphisms in the IL8 and IL8 receptor genes are associated 

with increased susceptibility to pyelonephritis (Artifoni et al., 2007; Lundstedt et al., 2007). Mice 

lack IL8, but express analogous chemokines that ligate CXCR2, including CXCL2 (MIP-2), and 

mediate neutrophil recruitment. Cxcr2-deficient mice are susceptible to severe pyelonephritis 

and even develop renal abscesses (Svensson et al., 2008). Notably, we demonstrated 

enhanced CXCL2 production by murine MNPs in the presence of high salt (Figure S6C). 

 

The kidney not only constitutes an environment with marked regional differences, but is also a 

highly dynamic environment for tissue-resident cells. The magnitude of the intrarenal sodium 

gradient varies significantly depending on hydration status. During dehydration, the relative 

sodium concentration within the renal medulla increases to facilitate water reabsorption from 

filtrate to concentrate urine and restore normovolaemia. This scenario produces physical 

conditions that are permissive for infection, with low urine flow and reduced expulsion of 

bacteria ascending from the bladder.  Our data suggest that it is in just such conditions that the 

medullary defence zone is optimized. This is achieved by utilizing the same environmental 
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signal that is required for urine concentration to position antibacterial MNPs in the medulla and 

to augment their function. This elegant mechanism allows local conditions to orchestrate a 

responsive and adaptable defence zone, commensurate with the likely challenge; when 

physical expulsion of bacteria is at its weakest, tissue-resident sentinels are strengthened by 

the local hypersalinity. These findings also have important clinical implications, suggesting that 

the current practice of increasing fluid intake during UTIs may be counter-productive, due to the 

negative impact of reduced medullary sodium on the position and anti-bacterial function of local 

MNPs.  

 

In summary, our work elucidates the mechanisms mediating effective tissue-specific immunity 

within the kidney, and reveals a critical accessory role for the homeostatic function of a vital 

organ in optimizing local defence to protect it from bacterial invaders.   
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Figures 
                
Figure 1: Tissue resident macrophages are enriched in the human renal medulla and 
have enhanced anti-bacterial function 
(A-B) Representative FACS plots (A) and quantification of relative frequency (B) of human 

kidney MNPs demonstrating CD45+, CD3/19/15-, MHCIIhi CD11chi CD14+ and CD14- subsets. 

Graph shows mean and standard error of mean (SEM) of n=5 human kidneys. 

(C)  Confocal microscopy of human kidney showing MHC II (green) and CD14 (cyan)+ cells 

within the interstitium (actin, red). Lower power image shown in left panel (scale bar = 100Pm). 

Area in white box magnified and shown in middle panel (scale bar = 20�Pm). Area in white box 

magnified and shown in two right-hand panels. 

(D-E)  Schematic and representative FACS plots (D) and quantification of CD14+ 

macrophages in human medulla=M and cortex=C, in digested kidney tissue and in cells that 

migrate from kidney tissue blocks (E).  Graphs show mean and SEM of values obtained from 

n=5 kidney samples. 

(F) Representative flow cytometric histogram and quantification of % cells that have 

phagocytosed UPEC and the MFI of cells in human kidney CD14– (blue) and CD14+ (red) 

MNPs. Graphs show mean and SEM of values obtained from n=5 technical replicates, 

representative of n=3 independent experiments. 

(G) Quantification of IL8 present in culture supernatants obtained from sorted CD14– (black) 

and CD14+ (white) human kidney MNPs incubated with UPEC. Graphs show mean and SEM 

of values obtained from n=4 technical replicates of n=1 human kidney sample. 

(H) Intracellular FACS staining for TNF-alpha and IL6 in CD14– (black) and CD14+ (white) 

human kidney MNPs incubated with UPEC. Each point represents a sample from one kidney. 

(I) Neutrophil activating effect of supernatants obtained from kidney cortex (black) and medulla 

(white) cells following incubation with UPEC: Neutrophil phagocytosis of UPEC (% left and MFI 

middle) and myeloperoxidase production (right). Graphs show mean and SEM of 4 technical 

replicates and are representative of results obtained in n=5 kidneys. 

(J) Depletion of CD11c+ cells from medullary kidney samples reduces neutrophil activating 

effects of supernatant, as indicated by myeloperoxidase production. Graphs show mean and 

SEM of 4 technical replicates and are representative of results obtained in n=2 kidneys. 

 

* p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001 by Student’s unpaired (B, I, J) and paired 

(E-H) t tests.  

See also Figure S1. 
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Figure 2: Chemokine expression in the human kidney 
(A)  Heatmap of relative gene expression of selected chemokine transcripts in n=4 paired 

human cortex and medulla samples. RNA transcripts assessed by microarray and data 

analyzed with R. 

(B)  Representative FACS histograms of CX3CR1 and CCR2 surface expression on CD14 – 

(blue) and CD14+ (red) human renal MNPs. 

(C)  RT- PCR of CX3CL1 (left) and CCL2 (right) mRNA in human kidney cortex and medulla. 

Data expressed as 2-∆CT.   

(D) Confocal microscopy of CX3CL1 (magenta) staining in human cortex (top panel) and 

medulla (middle panel). Isotype control staining of medulla section shown in lower panel. 

Phalloidin staining (white) allows identification of renal tubules. Scale bar -80PM. 

(E) Quantification of fluorescence intensity of CX3CL1 staining in cortex and medulla samples. 

Data obtained from n=5 areas of cortical and medullary renal tubules (t) and interstium (i) 

and expressed relative to the staining in the tubular isotype control. 

(F-G) Quantification of migration of human renal CD14+ (red) and CD14- (blue) MNPs from 

tissue explants incubated in normal media (Control) or media supplemented with human CCL2 

and CX3CL1. Graphs show mean and SEM of n=6 technical replicates, representative of 3 

independent experiments. 

* p<0.05 and Student’s paired (B) and unpaired (E) t tests.  

See also Figure S2. 

 

 
 
 
Figure 3: Chemokine secretion by renal tubular epithelium in high salt conditions is 
NFAT5-dependent 
 

(A)  Quantification of CCL2 (left) and CX3CL1 (right) in supernatants obtained from HK2 cells 

cultured with increasing concentrations of sodium (black line) + LPS (red line).  

(B)  Heatmap of relative gene expression of NFAT5, SLC5A3, MAPK13 and SGK1 in n=4 

paired cortex and medulla samples obtained from human kidneys. RNA transcripts 

assessed by microarray and data analyzed with R. 

(C)  RT-PCR of NFAT5 mRNA in human kidney cortex (blue circles) and medulla (red circles). 

Data expressed as 2-∆CT.   

(D)  Western Blot of NFAT5 protein in human renal cortex and medulla relative to actin. 

(E)  Quantification of CCL2 and CX3CL1 in supernatants obtained from HK2 cells cultured with 

increasing concentrations of salt and control siRNA (black line) or NFAT5 siRNA (red line). 
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(F)  Quantification of CCL2 and CX3CL1 in supernatants obtained from HK2 cells cultured with 

increasing concentrations of salt (black line) with a p38 inhibitor (red line) or bortezomib 

(blue line). 

** p<0.01 and **** p<0.0001 by paired Student’s t test (C) and 2-way ANOVA (A, E, F). For A, 

E, and F, each square or circle shows the mean and SEM of 3 technical replicates and graphs 

show representative data from n=3 experiments.  

See also Figure S3. 

 

Figure 4: Disruption of renal sodium gradient, CCL2-CCR2 axis and NFAT5 causes 
aberrant chemokine production and MNP positioning 
 
(A-B)  Relative mRNA expression of NFAT5 (A) and CCL2/CX3CL1 (B) relative in human 

kidney cortex and medulla obtained from donors with diabetes insipidus (DI, blue boxes) 

compared with non-DI donors (red boxes). Data expressed as 2-∆∆CT. N>10 in each group. 

(C)  Ratio of CD14+ MNP in human kidney cortex and medulla in donors with DI (blue 

circles) and controls (red circles). Mean and SEM of all samples shown with horizontal line and 

error bars respectively. 

(D)  Confocal imaging of a kidney section obtained from a CD11c eYFP (green) mouse 

stained with F4/80 (red). Cortex and medulla identified. Low magnification image shown on left 

(scale bar = 300Pm). High magnification images shown on right (scale bar = 50�Pm).   

(E)  Representative FACS plot and schematic to demonstrate two major populations of 

CD45+ Lin- F4/80+ MNPs in murine kidney, designated MNP1 and MNP2. Lower panel shows 

FACS histograms of CD11c expression on these populations. 

(F-G)  Quantification of MNP2 (F) and relative Ccl2 mRNA expression (G) in cortex (C) and 

medulla (M) of control mice.  

(H-I)  Quantification of MNP2 (H) and relative Ccl2 mRNA expression (I) in cortex (C) and 

medulla (M) of Diabetes Insipidus (DI) mice. 

(J-K) Quantification (J) and representative FACS plot (K) of MNP in renal medulla of wild-type 

and Ccr2-/- mice. 

(L-M) Quantification (L) and representative FACS plot (M) of MNP in renal medulla of Nfat5fl/fl 

and Nfat5fl/fl Ert2-Cre mice following tamoxifen treatment.  

In J and L, each circle represents data from one mouse kidney. Mean and SEM of all samples 

shown with horizontal line and error bars respectively. 

 

* p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001, NS p>0.05 by unpaired (A-C, J, L) and paired 

(F-I) Student’s t-test. 

See also Figure S4. 
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Figure 5: High interstitial sodium, CCL-CCR2 axis and NFAT5 are required for 
recruitment of circulating monocytes into renal medulla 

(A) Effect of host Diabetes Insipidus on recruitment of circulating monocytes into renal 

cortex and medulla. Upper panel - Schematic showing experimental set-up. CD45.2 WT 

mice treated with tolvaptan (TOL) to induce DI. 6 days later, CD45.1 monocytes 

transferred IV. Lower panel - Quantification of interstitial CD45.1+ MNP in kidney cortex 

(blue circle) and medulla (red circle). 

(B)  Effect of CCL2 neutralisation on recruitment of circulating monocytes into renal cortex 

and medulla. Upper panel - Schematic showing experimental set-up. CD45.2 WT mice 

treated with CCL2 antibody or isotype control antibody. 6 days later, CD45.1 monocytes 

transferred IV. Lower panel - Quantification of interstitial CD45.1+ MNP in kidney cortex 

(blue circle) and medulla (red circle). 

(C-E) Ccr2-deficient (CD45.2) and WT (CD45.2) monocytes transferred intravenously into a 

CD45.1/2 mouse. Experimental schematic (C), representative FACS plots (D) and 

quantification of interstitial CD45.1+ MNP in kidney cortex (blue circle) and medulla (red 

circle). 

(F-H)   Nfat5fl/fl or Nfat5fl/fl Ert2-Cre CD45.2 mice treated with tamoxifen 7 days prior to 

intravenous transfer of WT CD45.1 monocytes. Schematic of experimental setup (F) 

and relationship between Nfat5 and Ccl2 expression (G) and recruitment of CD45.1+ 

cells to the interstitium (H) in the kidneys of Nfat5fl/fl (black squares) or Nfat5fl/fl Ert2-Cre 

(Green diamonds) mice. Each point represents a kidney samples. Mean and SEM of all 

samples shown with horizontal line and error bars respectively. 

 

  

*p<0.05, ** p<0.01, *** p<0.001 and NS p>0.05 by paired (E) and unpaired (A, B, E, H, J) 

Student’s t tests and linear regression analysis (G).  

See also Figure S5. 

 

Figure 6: Medullary hypersalinity enhances antibacterial function of renal macrophages 
 

(A-B)  UPEC phagocytosis (% and MFI) and IL8 production by human cortex and medulla 

macrophages.  Graphs show mean and SEM of n=5 technical replicates, representative of n=3 

independent experiments. 

(C) UPEC phagocytosis (% (left) and MFI (right)) by human monocyte derived macrophage 

(hMDM) cultured in normal medium (Control, black bars) or medium supplemented with 100 

mM additional NaCl (+Na, white bars).  Graphs show mean and SEM of 4 technical replicates, 

representative of 3 independent experiments. 
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(D) Confocal microscopy of UPEC phagocytosis by human MDMs in normal media (left two 

panels) and high salt conditions (+100mM Na, right two panels). Actin = white, DAPI = blue, 

UPEC = green. Scale bar = 10PM. 

(E) Bacterial (UPEC) killing in hMDM cultured in normal medium (Control, black bars) or with 

the addition of 100 mM Na (+Na, white bars); propidium iodide+ bacteria (left) and bacterial 

growth (right). Graphs show mean and SEM of n=3 technical replicates, representative of n=4 

independent experiments. 

(F) Quantification of IL8, TNF-alpha and IL6 in supernatants obtained from hMDM cultured with 

UPEC in normal medium (black bars) or with additional Na (white bars). Graphs show mean 

and SEM of n=6 technical replicates, representative of n=3 independent experiments. 

(G) Quantification of UPEC phagocytosis and IL8, TNF-alpha and IL6 production by hMDMs 

cultured in increasing concentrations of Na following treatment with control siRNA (black line) 

or NFAT5 siRNA (red line). Graphs show mean and SEM of n=6 technical replicates, 

representative of n=3 independent experiments. 

(H) Representative confocal microscopy images of murine Ubi-GFP BM derived macrophages 

in normal media (Control, left upper panel) or media with additional 100mmol/L Na (+Na, left 

lower panel), scale bar =50PM, and quantification of surface area during live imaging (right 

panel) of Ubi-GFP BM derived macrophages in control (black circles) and high salt (red 

squares) conditions.  Each point represents surface area data (mean and SEM) from one cell 

imaged every 40 seconds over one hour.  

* p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001 by paired (A-B) and unpaired (C-E, G) 

Student’s t test and 2-way ANOVA (F).  

See also Figure S6. 

 
 
 
Figure 7: Loss of intrarenal sodium gradient confers susceptibility to pyelonephritis 
 
(A)    Quantification of bacterial load in renal parenchyma of control (red) and DI (blue) mice. 

Pooled data from 3 individual experiments. 

(B)   Confocal images of a kidney obtained from a mouse with DI post-intravesical UPEC 

challenge. Actin (grey) delineates renal parenchyma. Low power image shown in left panel. 

White Scale bar = 100PM High power magnification of area indicated by red square 

demonstrates an abscess containing Gr1+ (magenta) neutrophils, CD64+ (blue) MNP and 

UPEC (green). 

(C)    Frequency of sepsis events (pyelonephritis, bacteremia or death) in control (red) and 

diabetes insipidus (blue) mice.  
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(D)   Frequency of sepsis events (pyelonephritis, bacteraemia or death) in CCL2 Ab treated 

mice following induction of UTI. 

(E)   Frequency of sepsis events (pyelonephritis, bacteraemia or death) (left panel) and 

bacterial burden (right panel) in WT (red bar) and  CCR2-/-  mice (blue bar) following 

induction of UTI. 

(F)   Quantification of bacterial load and Nfat5 mRNA expression in kidneys of UTI mice. 

(G)   Effect of lithium treatment on frequency of sepsis events (pyelonephritis, bacteraemia 

and death) in UTI mice. 

(H)       Frequency of pyelonephritis (left panel) and bacterial burden (right panel) in WT (red 

bar) and Nfat5fl/fl Ert2-Cre (blue bar) mice following induction of UTI. N=11 mice total. 

(I)   Frequency of UTI in Autosomal Dominant Polycystic Kidney Disease patients treated 

with tolvaptan. 

(J)   Meta-analysis of incidence of asymptomatic bacteriuria, UTI and pyelonephritis in 

patients with sickle cell disease (SCD).  

(K)   Effect of donor DI on frequency of ureteric infection in kidney donors. 

  

*p<0.05, ** p<0.01, **** p<0.0001 by unpaired (B, F) Student’s t test, linear regression analysis 

(G) and Chi-squared test (D, E, F, H, K).  Bar graphs show mean and SEM. 

See also Figure S7. 
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Supplementary Figure Legends 
 
Figure S1 (related to Figure 1): 
(A) Cell surface staining for macrophage and DC markers in human kidney MNPs.  
(B) Number of CD14+ MNPs that migrated from each gram of cortex and medulla tissue. 

(C) Demographic data of organ donors and effect of donor variables on distribution of CD14+ 

renal macrophages. 

(D) Confocal microscopy of UPEC phagocytosis and cell surface binding in human MDMs at 

4oC and 37oC. Actin = white, DAPI =blue, UPEC = green, UPEC/actin co-localisation = 

magenta. 

(E) Effect of temperature on fluorescence intensity (MFI) of human kidney MNPs and 

neutrophils incubated with fluorescent UPEC. 

 
NS p>0.05 by unpaired Student’s t-test or linear regression analysis. *** p<0.001, **** p<0.0001 

by Student’s unpaired t-tests. 

 

Figure S2 (related to Figure 2): 
(A) Cell surface staining for chemokine receptors in human renal MNPs. 

(B) CCL2 transcript levels in flow sorted CD45-, CD31- tubular epithelial cells obtained from 

human cortex and medulla samples. 

* p<0.05 by paired Student’s t-test. 

 
Figure S3 (related to Figure 3): 
(A) Effect of mannitol and salt on HK2 cell NFAT5 expression and chemokine transcription 

and production. 

(B) Effect of salt on HK2 cell viability 

(C) Chemokine response of HEK 293T cells to high salt environment. 

(D) Effect of NFAT5 siRNA on HK2 cell NFAT5 transcription and production. 

 

* p<0.05, *** p<0.001, **** p<0.0001 by 1-way or 2-way ANOVA, NS p>0.05 by 1-way ANOVA. 

 

Figure S4 (related to Figure 4):  
(A) Urine output and serum sodium in organ donors. Donors with urine output > 4 L/day = 

DI, <2.25 L/day = control.  

(B) Relative expression of chemokines in renal cortex and medulla from control and 

Diabetes Insipidus (DI) donors. Data expressed as 2-∆CT. 

(C) Correlations between donor variables and DI status. 
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(D) Confocal microscopy of CD11c eYFP kidneys in control and DI mice. Red=actin, 

white=CD11c. 

(E) Distribution of CD11c+ kidney cells in adult, neonate and DI mice. 

(F) Confocal microscopy of CD11c eYFP kidneys in adult, day 0.5 and day 6.5 mice (left). 

Red=actin, white=CD11c. 

(G) Changes in urine osmolality, urine sodium and distribution of CD11c+ cells in neonatal 

mice (right).  

(H) Correlation between urine osmolality and distribution of CD11c+ cells in mice.  

(I) Effect of CCL2 Ab treatment on frequency of macrophages in renal cortex and medulla. 

(J) Effect of in vivo Nfat5 knockdown on renal expression of Ccl2. 

 

*p<0.05 ** p<0.01 *** p<0.001 **** p<0.0001 by unpaired Student’s t-test, 2-way ANOVA or 

linear regression, NS p>0.05 by unpaired Student’s t-test or Chi-Squared test. 

 

Figure S5 (related to Figure 5):  
(A)      Ki67 expression in murine kidney mononuclear phagocytes in cortex (C) and medulla 

(M). 

(B)      Nfat5 expression in tamoxifen treated Nfat fl/fl (white) and Nfat5 fl/fl Ert2-CRE (green) 

mice. 
NS p>0.05 by paired Student’s t-test, ** p<0.01 by unpaired Student’s t-test. 
 

Figure S6 (related to Figure 6): 
(A) Effect of temperature on fluorescence intensity (MFI) of hMDMs incubated with 

fluorescent UPEC (left). Representative flow cytometry plots of propidium iodide 

staining of UPEC following intracellular ingestion by hMDMs with/without salt (right). 

(B) UPEC phagocytosis, intracellular CXCL2 staining and TNFα production by murine bone 

marrow-derived macrophages cultured in salt. 

 

* p<0.05, ** p<0.01, *** p<0.001, p<0.0001 by unpaired Student’s t-tests compared to no salt 

control. 

 

 

Figure S7 (related to Figure 7): 
(A)  Effect of experimental DI on urine and serum osmolality, weight, renal Nfat5 expression 

and circulating neutrophil count. 

(B)  Effect of DI on kidney-resident neutrophils in UTI mice (left) and confocal microscopy of 

kidney from control UTI mice. Actin = grey. Gr1= magenta. UPEC=green. CD64=blue. 
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(C) Effect of lithium treatment on renal Nfat5 expression in mice. 

(D) Bibliography for sickle cell disease meta-analysis 

(E) Urine output in organ donors with sterile and positive ureter cultures (left) and 

methodology for organ donor study (right). 

 

*p<0.05, ** p<0.01, **** p<0.0001, NS p>0.05 by unpaired Student’s t-tests. 
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STAR methods 
 
Contact for reagent and resource sharing 
 
Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Menna Clatworthy (mrc38@cam.ac.uk) 

 

MTAs were obtained for the use of NFAT5 fl/fl and NFAT5 fl/fl Ert2-CRE mice between the 

University of Cambridge and the University of Heidelberg. 

 

Experimental model and subject details 
 
Human subjects 

Human kidney samples 

Kidneys donated for transplantation, but unsuitable for implantation (due to damage to the 

arterial patch, parenchymal sclerosis, or suspicion of donor malignancy (Figure S1C) were 

used. All analysis of human material was performed in the UK; ethical approval was granted by 

the local ethics committee (REC12/EE/0446) and the study was also approved by NHS Blood 

and Transplant (NHSBT). Kidneys had a cold ischemic time of less than 30 hours (median 17 

hours) prior to processing.  Demographic donor data was retrieved from the NHSBT Electronic 

Offering System (EOS) files (Figure S1C). “Diseased” kidneys were those declined on the basis 

of abnormal biopsy rather than anatomical or systemic concerns. 

 
Animals 

Mice 

Wild-type C57BL/6 and UBI-GFP-BL/6 (Schaefer et al., 2001) mice were obtained from 

Jackson Laboratories Laboratories (Margate, UK). Transgenic mice expressing Venus EYFP 

under the control of the CD11c promoter (Lindquist et al., 2004) were a gift from M. 

Nussenzweig (Rockefeller University, New York, USA). Ccr2-/- mice (Boring et al., 1997) were a 

gift from Callum Bain and Simon Jenkins (University of Edinburgh). Nfat5fl/fl mice and mice with 

a tamoxifen-inducible derivative of the Cre-recombinase under the control of the ubiqitinC 

promoter were gifted by Christoph Kuper and Wolfgang Neuhofer (Kuper et al., 2014).  Mice 

were maintained in specific-pathogen-free conditions at a Home Office-approved facility in the 

UK. All mice were females aged 6-10 weeks old, weighing 20-25g, group-housed, having 

undergone no previous procedures. Littermates of the same sex were randomly assigned to 

different experimental groups. All procedures were conducted in accordance with the United 

Kingdom Animals (Scientific Procedures) Act 1986. 
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Cell Lines 

Renal tubular epithelial cell culture 

HK2 cells (ATCC, Virginia, USA) were cultured to a 60-80% confluent monolayer in a 1:1 mix of 

DMEM:F12 media containing 2 mM L-Glutamine, 20 mM HEPES, 5 µg/ml transferrin, 5 ng/ml 

sodium selenite, 400 ng/ml hydrocortisone, supplemented with 10% heat inactivated FCS (all 

Sigma-Aldrich, Gillingham, UK). Culture medium was supplemented with 0-120 mmol/L sodium 

chloride (South Devon Healthcare, Torbay, Devon), 0-200 mOsmol/kg 20% mannitol (Baxter, 

Thetford, UK), 100 ng/ml E. coli lipopolysaccharide (Sigma-Aldrich, Gillingham, UK), 10-6 M 

p38i inhibitor SB203580 (Cell Signaling Technology, Danvers, USA), 10-9 M bortezomib 

(SelleckChem, Houston, USA) or DMSO control (Sigma-Aldrich, GIllingham, UK). After 48 hr, 

supernatants were harvested and CX3CL1 and CCL2 quantified with Quantikine ELISA kits (R 

and D, Abingdon, UK). Cell viability was assessed using live/dead cell staining (Live/Dead 

Aqua 405, Invitrogen, Paisley, UK). 
 
Uropathogenic E. coli (UPEC) 

UPEC (UTI89, a gift from S. Hultgren (Hung et al., 2009) in the mid to late log phase of growth 

were labelled with eFluor 670 (Invitrogen, Paisley UK) for 45 minutes at 37οC, washed with 

heat-inactivated FCS (Sigma-Aldrich, Gillingham, UK), heat-inactivated at 56οC for 30 minutes 

and washed 3 times in PBS.  

 

 

Method details 
 
MNP isolation from human kidneys 

Around 30g of kidney tissue was minced and digested in 2.5mg/ml DNase I, 5mg/ml 

collagenase A and 50mg/ml Dispase II (all Roche, Burgess Hill, UK) in RPMI supplemented 

with 2% heat inactivated fetal calf serum (FCS) and 1% penicillin-streptomycin (both Sigma-

Aldrich, Gillingham, UK), hereafter referred to as complete RPMI. Tissue was dissociated using 

a Gentle-MACS machine (Miltenyi Biotech, Bisley, UK) then passed sequentially through 100 

μm, 50 μm and 30 μm cell strainers before density centrifugation using a 44% Percoll (GE 

Healthcare Life Sciences, Little Chalfont, UK) gradient.  

 

Characterisation of murine kidney MNPs 

Immediately following terminal procedure mouse kidneys were perfused with PBS. Organs 

were dissected into cortex and medulla and minced through a 40 μm cell strainer, digested in 

1mg/ml collagenase A, 1mg/ml DNase I (both Roche, Burgess Hill, UK) and 2% heat 
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inactivated FCS (Sigma-Aldrich, Gillingham, UK) in PBS for 20 minutes, before RBC lysis and 

filtration through a 30 μm strainer. 

 

Flow cytometry and cell sorting 

Cells were blocked with human FcR block (Miltenyi Biotech, Bisley, UK) or normal mouse 

serum and incubated with antibodies (see Resources Table) for 1 hour at 4oC, followed by 

live/dead cell staining (Live/Dead Aqua 405, Invitrogen, Paisley, UK) for 20 minutes at room 

temperature. Cell surface receptor staining was undertaken at room temperature. Intracellular 

staining was performed used the FoxP3 intracellular staining kit (eBioscience, Hatfield, UK). 

Samples were processed on a Fortessa flow cytometer (Becton Dickinson, Basel, Switzerland) 

and data analyzed using Flowjo software (Treestar, Ashland, TN).  Cell sorting was performed 

on an Aria-Fusion III machine (Becton Dickinson, Basel, Switzerland).  

Antibodies (Resource Table) were used at 1 in 100 dilution for flow cytometry. Secondary 

antibodies were used at 1 in 300 dilution where required. 

 

Immunofluorescence Staining 

Samples were fixed in 1% paraformaldehyde (Electron Microscopy Services) / L-lysine/ sodium 

periodate (both Sigma-Aldrich, Gillingham, UK) buffer for 24 hours followed by 24 hours in 30% 

sucrose in P-buffer. 20 μm sections were permeabilized and blocked in 0.1M TRIS, containing 

0.1% Triton (Sigma), 10% normal mouse serum, 1% BSA (R and D, Abingdon, UK). Images 

were acquired using an LSM 710 (Carl Zeiss, Cambridge, UK) or TCS SP8 (Leica, Milton 

Keynes, UK) confocal microscope. Raw imaging data were processed and quantified using 

Imaris (Bitplane, Zurich, Switzerland). For quantification of tubular and interstitial CX3CL1 

staining, a region of interest was manually created over a tubule or area of interstitum using the 

phalloidin staining to identify these anatomical areas. The mean fluorescence intensity of the 

CX3CL1 channel was then measured in that region. 

Antibodies (Resource Table) were used at 1 in 100 dilution for immunofluorescence. 

Secondary antibodies were used at 1 in 300 dilution where required. 

  

Human kidney MNP migration studies 

2cm3 tissue samples (approx. 2g) from renal cortex or medulla were incubated at 37oC in 

complete RPMI overnight. Recombinant human chemokines were added at: 500ng/ml CX3CL1 

(Life Technologies, Paisley, UK) and 40ng/ml CCL2 (R and D, Abingdon, UK). Migrated cells 

present in the well were harvested, washed in cold PBS, stained and analysed by flow 

cytometry.  
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UPEC Phagocytosis assay 

Fluorescent UPEC were cultured with renal cell suspensions at 37oC for 4-6 hours, in RPMI 

with 10% FCS (both Sigma-Aldrich, Gillingham, UK). Control wells were incubated at 4oC to 

adjust for non-specific binding. Following incubation, cells were washed 3 times with cold PBS 

and processed for flow cytometric analysis.  

 

Neutrophil phagocytosis and myeloperoxidase assay  

Fresh human kidney cell suspensions were incubated at 37oC overnight with heat inactivated 

UPEC. Supernatants were harvested and frozen at -20oC until used. 50ml whole blood was 

taken from healthy volunteers (Ethical Approval REC 08/H0308/176) and added to 5ml 4% 

citrate (Sigma-Aldrich, Gillingham, UK). Cell layers were separated with Histopaque 1077 

(Sigma-Aldrich, Gillingham, UK) and the granulocyte fraction isolated. Red cells were lysed and 

remaining cells washed and counted. Human granulocytes were cultured with fluorescent 

UPEC (+/- kidney supernatant) at 37oC for 60 minutes, with control wells incubated at 4oC to 

adjust for non-specific binding. Supernatant was retrieved for myeloperoxidase ELISA (R&D 

Systems, Abingdon UK). Cells were then stained and analyzed by flow cytometry. 

 
CD11c depletion of human renal cell suspensions 

Fresh cell suspensions of human renal cortex and medulla were blocked with human FcR block 

(Miltenyi Biotech, Bisley, UK) and incubated with CD11c beads (BD Biosciences, Oxford, UK) 

for 20 minutes and washed. Cell suspensions were then passed through LS MACS column 

(Miltenyi Biotech, Bisley, UK) in the presence of a magnetic field. Depletion was confirmed 

using flow cytometry. 

 

Reverse Transcriptase Polymerase Chain Reaction 

Tissue sections or cell suspensions were lysed in Trizol (Life Technologies, Paisley, UK) and 

density centrifugation performed using chloroform (Sigma-Aldrich, Gillingham, UK). 

Subsequent RNA extraction was performed using Ambion RNA PureLink Kit (Life 

Technologies, Paisley, UK) and yields analyzed using Nanodrop spectrophotometry (Thermo-

Scientific, Loughborough, UK).  Complementary DNA synthesis was undertaken using High 

Capacity RNA to cDNA (Life Technologies, Paisley, UK) and BioRad (Hemel Hempstead, UK) 

PCR machine. RT-PCR was performed using Taqman reagents (Thermo-Fisher, Paisley, UK) 

on the Viia 7 PCR machine (Life Technologies, Paisley, UK). For primers see Resource Table. 

Gene expression relative to GAPDH/HPRT or GUSB calculated using 2-∆CT for cortex and 

medulla individually and 2-∆∆CT comparatively (Schmittgen and Livak, 2008). 
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Western Blotting 

Nuclear protein lysates of human renal cortex and medulla were prepared using RIPA buffer 

(Thermo Fisher Scientific, Paisley, UK). 10μg samples were loaded onto a 4-12% Bis-TRIS 

protein gel (Nupage Novex, Life Technologies, Paisley, UK) at 165V for 45 mins in MOPS-SDS 

buffer (Thermo Fisher Scientific, Paisley, UK). The gel was then transferred to a nitrocellulose 

membrane (iBlot Western Blotting System, Invitrogen, Paisely, UK) and blocked for 1 hour at 

room temperature in 2.5% milk /TBS. The membrane was incubated with primary antibody at 

4οC overnight and secondary antibody at room temperature for 2 hours then washed in 2.5% 

milk/ TBS-Tween. The blot was developed with the LI-COR Odyssey CLx Imager (LI-COR 

Biosciences – GmbH, UK). Images were quantified using Fiji/ ImageJ software (Bethesda, 

USA). 

For Western Blotting, antibodies (Resources table) were used at 1:1000-1:5000 (primary) and 

1:10,000 (secondary) dilution. 

 

NFAT5 knockdown 

Lipid complexes of siRNA (using Lipofectamine and Silencer Select siRNA, both Thermo-

Fisher, Paisley, UK) were incubated at room temperature for 20 minutes then added to either 

HK2 cells cultured in OptiMEM (Thermo-Fisher, Paisley, UK) or to human monocyte derived 

macrophages in serum and antibiotic free RPMI (Sigma-Aldrich, Gillingham, UK). 6 hours later, 

human monocyte derived macrophages were supplemented with an equal volume of RPMI 

containing 10% heat inactivated FCS (Sigma-Aldrich, Gillingham, UK). Knockdown efficacy 

was evaluated using RT-PCR and intracellular staining for NFAT5. 

 

In vivo induction of diabetes insipidus, CCL2 blockade and lithium treatment 

Wild-type C57/Bl6 or CD11c eYFP mice were treated with: i) intra-peritoneal demeclocycline 

90mg/kg (LKT Laboratories, St Paul, USA), tolvaptan 5 mg/kg (Sigma-Aldrich, Gillingham, UK) 

or PBS control 12 hourly for 4 days, ii) intra-peritoneal anti-CCL2 antibody 1mg/kg or isotype 

(both eBiosciences, Hatfield, UK) every 48-72 hr for 10 days, iii) intra-peritoneal lithium chloride 

40mg/kg (Sigma-Aldrich, Gillingham, UK) or PBS control daily for 4 days. Animals had free 

access to drinking water. Biochemical analysis of urine and serum was undertaken at the Core 

Biochemical Analysis Laboratory in Addenbrooke’s Hospital, Cambridge, UK. 

 

In vivo knockdown of Nfat5 

Nfat5fl/fl and Nfat5fl/fl Ert2-Cre mice were treated daily with 1mg intra-peritoneal tamoxifen 

(Sigma-Aldrich, Gillingham, UK) on days 0-1 (Fig 4) or days 0-5 (Figure 5, Figure 7H). Nfat5 
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knockdown was subsequently confirmed with RT-PCR.  Monocytes were transferred on day 7 

(see below) or mice were catheterized and UPEC distilled into the bladder for the UTI model. 

 

Adoptive transfer of monocytes 

Femora from wild type, Ccr2-/- or Nfat5fl/fl Ert2-Cre mice were flushed with sterile PBS. Bone 

marrow monocytes were isolated by negative selection using magnetic cell sorting (Miltenyi 

Biotech, Surrey, UK) and 0.5 – 1.0 x 106 cells were transferred into recipient mice via tail vein 

injection. After 6-7 days recipient mice received 1µg intravenous CD45 fluorescent antibody to 

label circulating cells. Mice were sacrificed, kidneys retrieved and processed in order to identify 

tissue-resident monocyte derived cells. 

 

Murine bone marrow derived macrophage culture  

Femora from wild type or UBI-GFP/BL6 mice were flushed with sterile PBS. Unselected bone 

marrow cells were incubated in complete RPMI with 0.1 mcg/ml MCSF (Peprotech, London, 

UK) and supplemented every 72 hours for 5-7 days to culture bone marrow derived monocytes.  

 

Macrophage morphology 

Bone marrow derived macrophages were cultured from UBI-GFP/BL6 mice. At day 7, cells 

were resuspended in PureCol EZ Gel solution (Sigma-Aldrich, Gillingham, UK) within a glass 

microscopy chamber and left to set for 1 hour at 37 oC. 10 x RPMI (Sigma-Aldrich, Gillingham, 

UK) supplemented with 0-100 mmol/L sodium chloride (South Devon HealthCare, Torbay, UK) 

and 1:500 AF647-labelled wheat germ agglutinin (Invitrogen, Paisley, UK) was layered on top 

of the collagen matrix. The chamber was sealed and confocal microscopy undertaken. Cell 

measurements were performed using Imaris Softare (Bitplane, La Jolla, USA). 

 
Human monocyte derived macrophage assays 

Leukocyte cones (NC24) were obtained from the National Blood Service (Cambridge, UK). Cell 

fractions were separated using Histopaque 1077 (Sigma-Aldrich, Gillingham, UK) and the 

monocyte layer retrieved. Cells were cultured in complete RPMI with 0.1 µg/ml MCSF 

(Peprotech, London, UK) and were supplemented every 72 hr for 5-10 days. After stimulation 

with UPEC, supernatants were retrieved and IL6, TNF- α and IL8 measured with Quantikine 

ELISA kits (R and D, Abingdon, UK). 

 

Bacterial killing assay 

Human monocyte derived macrophages were prepared as detailed below, with or without 100 

mmol/L sodium chloride (South Devon HealthCare, Torbay, UK) for the final 48 hours. Cells 

were incubated with opsonised UTI89 (MOI 100) and fresh Optimem medium (Gibco, Paisley, 
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UK) for 45 minutes at 37oC with 5% CO2. Cells were washed 3 times with PBS. Fresh 

OptiMem containing 100 µg/ml gentamicin (Gibco, Paisley, UK) was added and cells incubated 

for a further 15 (T0), 60 (T1) or 120 (T2) minutes. Cells were water lysed and plated out on LB 

agar in serial dilutions and incubated overnight (T0 and T2) and colonies counted using the 

aCOLyte-3 colony counter (Synbiosis, Cambridge, UK). Samples from T1 were lysed, 

resuspended in Live Cell Imaging Solution (Gibco, Paisley, UK) and stained using Live/Dead 

BacLight Bacterial Viability and Counting Kit (Gibco, Paisley, UK) as per manufacturer’s 

protocol.  

 

In vivo UTI experiment 

Diabetes insipidus, CCL2 blockade or lithium treatment was induced in 6-8 week old female 

C57/BL6 or CD11c eYFP mice. Under isoflurane anesthesia (Baxter, Newbury, UK), the 

perineum was cleaned, the urethra catheterised using 0.28 x 0.60 mm polyethylene tubing 

(Instech Laboratories, PA, USA) and 100 μl of UPEC (OD600 0.5) instilled. Mice were sacrificed 

the following day and organs immediately perfused with sterile PBS. Kidney and spleen cell 

suspensions and blood were plated onto LB agar in serial dilutions and cultured overnight at 

37oC without CO2. CFUs were quantified using the aCOLyte-3 colony counter (Synbiosis, 

Cambridge, UK).  

 

Quantification and statistical analysis 
 
Statistical analyses 

Statistical analyses were performed using Graphpad PRISM software (La Jolla, USA).  Unless 

otherwise stated data are expressed as mean ± SEM. A two-tailed Student t-test was applied, 

unless otherwise indicated. Outliers were identified using the ROUT method within Graphpad 

PRISM. 

All experiments were subject to at least three technical replicates per experimental parameter, 

and all data shown are representative of at least 3 individual experiments, unless where 

otherwise indicated. Biological replicates are shown as individual data points. * p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001, NS p>0.05. 

 

Meta-analysis of UTIs in sickle cell disease 

A PubMed search from 2000-2015 using the terms “sickle cell disease AND [infection OR urine 

OR UTI OR urinary OR pyelonephritis]” was undertaken on 7th July 2015. All available abstracts 

were reviewed and all studies evaluating frequency of urinary tract infection (including 

pyelonephritis and asymptomatic bacteriuria) in patients with sickle cell disease (excluding 
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sickle cell trait) were included where the raw data were available. Data were analyzed using 

RevMan software Version 5.3 (Copenhagen, Denmark, The Cochrane Collaboration). 

 

 

 

Microarray analysis 

A previously published transcriptomic data set  (Higgins et al., 2004) of n=4 paired human 

cortex and medulla samples from nephrectomy specimens was obtained from the Gene 

Expression Omnibus (GSE3931). RNA was extracted from macroscopically dissected cortex 

and medulla samples and gene expression assessed by microarray. The microarray data were 

analyzed with R (Gentleman et al., 2004) using Bioconductor packages Biobase, GEOquery 

and limma. Chemokines that were differentially expressed between the cortex and medulla 

were identified and a heatmap was generated using the gplots package within R.  
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER  
Antibodies 
Live/ Dead Aqua 405 Invitrogen  L34957 
Anti-human CD45 Monoclonal Antibody (2D1), PE Thermo Fisher 

Scientific 
Cat# 12-9459-42; 
RRID:AB_10718238 

Anti-human CD45 Monoclonal Antibody (2D1), 
PerCP-Cy5.5 

Thermo Fisher 
Scientific 

Cat# 9045-9459-
120; 
RRID:AB_11182108 

Anti-human HLA-DR Monoclonal Antibody (L243), 
eFluor 450 

Thermo Fisher 
Scientific 

Cat# 48-9952-42; 
RRID:AB_1603291 

Anti-human CD11c Monoclonal Antibody (3.9), 
PE-Cyanine7 

Thermo Fisher 
Scientific 

Cat# 25-0116-42; 
RRID:AB_1582274 

Anti-human CX3CR1 Monoclonal Antibody (2A9-
1), PE 

Thermo Fisher 
Scientific 

Cat# 12-6099-42; 
RRID:AB_10852707 

Anti-human TNF alpha Monoclonal Antibody 
(MAb11), PE 

Thermo Fisher 
Scientific 

Cat# 12-7349-82; 
RRID:AB_466208 

Anti-human IL-6 Monoclonal Antibody (MQ2-
13A5), PE-Cyanine7 

Thermo Fisher 
Scientific 

Cat# 25-7069-42; 
RRID:AB_2573522 

Anti-human CD206 (MMR) Monoclonal Antibody 
(19.2), Alexa Fluor 488 

Thermo Fisher 
Scientific 

Cat# 53-2069-42; 
RRID:AB_2574416 

Anti-human CD11b Monoclonal Antibody 
(C67F154), Alexa Fluor 488 

Thermo Fisher 
Scientific 

Cat# 53-0196-82; 
RRID:AB_2637196 

Anti-human CD64 (Fc gamma Receptor 1) 
Monoclonal Antibody (10.1), APC 

Thermo Fisher 
Scientific 

Cat# 17-0649-42; 
RRID:AB_10670630 

Anti-human CD16 Monoclonal Antibody 
(eBioCB16 (CB16)), PE-Cyanine7 

Thermo Fisher 
Scientific 

Cat# 25-0168-42; 
RRID:AB_10714839 

Anti-human CD209 (DC-SIGN) Monoclonal 
Antibody (eB-h209), PE 

Thermo Fisher 
Scientific 

Cat# 12-2099-42; 
RRID:AB_10853324 

Anti-human CD172a (SIRP alpha) Monoclonal 
Antibody (15-414), APC 

Thermo Fisher 
Scientific 

Cat# 17-1729-42; 
RRID:AB_1944409 

Anti-human CD8a Monoclonal Antibody (HIT8a), 
PE 

Thermo Fisher 
Scientific 

Cat# 12-0089-42; 
RRID:AB_10804039 

Anti-human CD195 (CCR5) Monoclonal Antibody 
(NP-6G4), APC 

Thermo Fisher 
Scientific 

Cat# 17-1956-42; 
RRID:AB_2573178 

Anti-human CD196 (CCR6) Monoclonal Antibody 
(R6H1), APC 

Thermo Fisher 
Scientific 

Cat# 17-1969-42; 
RRID:AB_10733388 

Anti-human CD197 (CCR7) Monoclonal Antibody 
(3D12), PE-Cyanine7 

Thermo Fisher 
Scientific 

Cat# 25-1979-42; 
RRID:AB_2573422 

Anti-human Brilliant Violet 650-conjugated anti-
CD14 (clone M5E2) 

Biolegend Cat# 301836; 
RRID:AB_2563799 

Anti-human APC-conjugated anti-CD192 (CCR2) 
(clone K036C2) 

Biolegend Cat# 357208; 
RRID:AB_2562239 

Anti-human FITC conjugated anti-IL-8 (clone 
E8N1) 

Biolegend Cat# 511406; 
RRID:AB_893462 

Anti-human Brilliant Violet 650-conjugated anti-
CD15 (Clone W6D3) 

Biolegend Cat# 323034; 
RRID:AB_2563840 

Anti- human APC conjugated anti-CD193 (CCR3) 
(clone 5E8) 

Biolegend Cat# 310708; 
RRID:AB_2228976 

Anti-human PE conjugated anti-CD1a (clone 
HI149) 

Miltenyi Biotech Cat# 130-097-868; 
RRID:AB_2656020 

Anti-human PE conjugated anti-CD1c (BDCA-
1)(clone AD5-8E7) 

Miltenyi Biotech Cat# 130-090-508; 
RRID:AB_244315 
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Anti-human Alexa Fluor 700-conjugated anti-CD3 
(clone UCHT1) 

Biolegend Cat# 300424; 
RRID:AB_493741 

Anti-human Alexa Fluor 700-conjugated anti-
CD15 (clone W6D3) 

Biolegend Cat# 323026; 
RRID:AB_2561427 

Anti-human Alexa Fluor 700-conjugated anti-
CD19 (clone HIB19) 

Biolegend Cat# 302226; 
RRID:AB_493751 

Anti-human APC conjugated anti-CD68 (clone 
Y1182A) 

Biolegend  Cat# 137008; 
RRID:AB_10575300 

Anti-mouse APC conjugated anti-CD191 (CCR1) 
(clone 53504) 

Biolegend Cat# 362908; 
RRID:AB_2563919 

Anti-human unconjugated rabbit NFAT5 
polyclonal antibody 

AbCam Cat# ab172506 

Anti-human NFAT5 polyclonal antibody (for 
Western blot) 

Thermo Fisher 
Scientific 

Cat# PA1-023; 
RRID:AB_2152617 

Anti-human CCL2 (MCP-1) antibody (clone 
EP1361)  

AbCam Cat# ab151538;  

Anti-human CX3CL1 antibody AbCam Cat# ab25088; 
RRID:AB_4486 

Anti-human Langerin/CD207 Phycoerythrin MAb 
(Clone 343828) 

R and D Systems Cat# FAB2088P; 
RRID:AB_2074215 

Anti-mouse CD45.2 Monoclonal Antibody (clone 
104), APC-eFluor 780 

Thermo Fisher 
Scientific 

Cat# 47-0454-82; 
RRID:AB_1272175 

Anti-mouse CD3 Monoclonal Antibody (clone 
17A2), eFluor 450 

Thermo Fisher 
Scientific 

Cat# 48-0032-82; 
RRID:AB_1272193 

Anti-mouse CD19 (clone eBio 1D3), eFluor 450 Thermo Fisher 
Scientific 

Cat# 48-0193-82;  
RRID:AB_2043815 

Anti-mouse Ly-6G (Gr-1) (clone RB6-8C5), eFluor 
450 

Thermo Fisher 
Scientific 

Cat# 48-5931-82; 
RRID:AB_1548788 

Anti-mouse CD11b Monoclonal antibody(clone 
M1/70), PerCP-Cyanine5.5 

Thermo Fisher 
Scientific 

Cat# 45-0112-82; 
RRID:AB_953558 

Anti-mouse CD11c Monoclonal Antibody (clone 
N418), PE-Cyanine7 

Thermo Fisher 
Scientific 

Cat# 25-0114-82; 
RRID:AB_469590 

Anti-mouse MHC Class II (I-A/I-E) Monoclonal 
Antibody (clone M5/114.15.2), Alexa Fluor 700) 

Thermo Fisher 
Scientific 

Cat# 56-5321-82; 
RRID:AB_494009 

Anti-mouse F4/80 Monoclonal Antibody (clone 
BM8), FITC 

Thermo Fisher 
Scientific 

Cat# 11-4801-82; 
RRID:AB_2637191 

Anti-mouse F4/80 Monoclonal Antibody (clone 
BM8), APC 

Thermo Fisher 
Scientific 

Cat# 17-4801-82; 
RRID:AB_469452 

Anti-mouse IL-6 Monoclonal Antibody (clone 
MP5-20F3), PE 

Thermo Fisher 
Scientific 

Cat# 12-7061-82; 
RRID:AB_466165 

Anti-mouse TNF alpha Monoclonal Antibody 
(clone MP6-XT22), PE 

Thermo Fisher 
Scientific 

Cat# 12-7321-82; 
RRID:AB_466199 

Anti-mouse Ki-67 Monoclonal Antibody (clone 
SolA15), PE 

Thermo Fisher 
Scientific 

Cat# 12-5698-82; 
RRID:AB_11150954 

Anti-mouse CCL2 (MCP-1) Monoclonal Antibody 
(clone 2H5) 

Thermo Fisher 
Scientific 

Cat# 16-7096-85; 
RRID:AB_469221 

Rabbit anti-mouse biotinylated anti-CXCL2 (Clone 
AAM48B) 

Biorad Cat# AAM48B; 
RRID:AB_2230059 

Anti-mouse CX3CR1 (clone SA011F11), Brilliant 
Violet 650 

Biolegend Cat# 149033; 
RRID:AB_2565999 

Brilliant Violet-605 Streptavidin Biolegend Cat# 405229 
Anti-mouse/human CD11b (Clone M1.70), Alexa 
fluor 488 

Biolegend Cat# 101217; 
RRID:AB_389305 

FITC conjugated anti-E. coli. AbCam Cat# ab30522; 
RRID:AB_732219 
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Rat Anti-Mouse CD45 (clone 30-F11), BUV 395 BD Biosciences Cat# 564279; 
RRID:AB_2651134 

beta Actin loading control Monoclonal Antibody 
(clone BA3R)  

Thermo Fisher 
Scientific 

Cat# MA5-15739; 
RRID:AB_10979409 

Donkey anti-Rabbit IgG Secondary Antibody, 
Alexa Fluor 488 

Thermo Fisher 
Scientific 

Cat# R37118; 
RRID:AB_2556546 

AF568-conjugated phalloidin Thermo Fisher 
Scientific 

Cat# A12380 

AF488 conjugated polyclonal rabbit anti-GFP Thermo Fisher 
Scientific 

Cat# A21311 

Goat anti-Rabbit IgG (H+L) Secondary Antibody, 
Pacific Blue 

Invitrogen Cat# P-10994; 
RRID:AB_2539814 

Anti-rabbit IgG (H+L) (DyLight™ 680 Conjugate)  Cell Signaling 
Technology 

Cat# 5366 

Anti-rabbit IgG (H+L) (DyLight™ 800 4X PEG 
Conjugate)  

Cell Signaling 
Technology 

Cat# 5151 

Bacterial and Virus Strains  
Uropathogenic E. coli (UPEC, UT189) a gift from S. Hultgren 

(Hung et al., 2009) 
 

Biological Samples   
Human kidney samples (ethical approval 
REC12/EE/0446) 

NHSBT  

Human whole blood samples (ethical approval 
REC08/H0308/176) 

National Blood 
Service 

Cat# Leukocyte cone 
NC24  

Chemicals, Peptides, and Recombinant Proteins 
Recombinant human CX3CL1 Life Technologies Cat# 10636H08H50 
Recombinant human CCL2 R & D Systems Cat# 279-MC-050;  
0-120 mmol/L sodium chloride South Devon 

Healthcare, Torbay 
Cat# Sodium 
Chloride 30% w/v 
Concentrate  

0-200 mOsmol/kg 20% mannitol Baxter Cat# mannitol 
Demeclocycline LKT Laboratories Cat# D1748 
Tolvaptan Sigma-Aldrich Cat# T7455- 

Tolvaptan 
CCL2 (MCP-1) Monoclonal Antibody (clone 2H5) Thermo Fisher 

Scientific 
Cat# 14-7096-81; 
RRID:AB_468430 

lithium chloride Thermo Fisher 
Scientific 

Cat# AM9480 

Tamoxifen Sigma-Aldrich Cat# T5648 - 
Tamoxifen 

100 ng/ml E. coli lipopolysaccharide Sigma-Aldrich Cat# L2630 
p38 inhibitor SB203580 Cell signaling 

technology 
Cat# SB203580 
5633 

Bortezomib (PS-341) proteasome inhibitor SelleckChem Cat# S1013 
Critical Commercial Assays 
FoxP3 intracellular staining kit eBioscience Cat# 00-5521-00 
CD11c bead separation  BD Biosciences  Cat# 130-097-059 
MACS separation using LS columns  Miltenyi Botech Cat# 130-042-401 
Complementary DNA synthesis; High capacity 
RNA to cDNA 

Life Technologies Cat# 4387406 

NFAT5 siRNA knockdown (using Lipofectamine 
and silencer select siRNA) 

Thermo Fisher 
Scientific 

Lipofectamine Cat# 
18324012;  
siRNA Cat# 
AM16708 
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Deposited Data 
Paired human cortex and medulla kidney samples Higgins et al., 2004 Gene Expression 

Omnibus (GSE3931) 
Experimental Models: Cell Lines 
Renal tubular epithelial cells (HK2 cells) ATCC Cat# CRL-2190; 

RRID:CVCL_0302 
Experimental Models: Organisms/Strains 
Mouse: Wild-type C57BL/6  Jackson Laboratories Stock No: 000664 
Mouse: UBI-GFP-BL/6 mice.  
Strain ID: C57BL/6-Tg(UBC-GFP)30Scha/J  

Jackson Laboratories Stock No: 004353 

Mouse: CD11c EYFP 
Strain ID: B6.Cg-Tg(Itgax-Venus)1Mnz/J 

Gift from M. 
Nussenzweig 

Stock No: 008829 
(Jackson 
Laboratories) 

Mouse: Ccr2-/- 
Strain ID: B6.129S4-Ccr2tm1Ifc/J 

(Boring et al., 1997)  
Gift from Callum Bain 
and Simon Jenkins 

Stock No: 004999 
(Jackson 
Laboratories) 

Mouse: Nfat5 fl/fl (Kuper et al., 2014) 
gifted by Christoph 
Kuper and Wolfgang 
Neuhofer 

 

Mouse: Nfat5 fl/fl Ert2-Cre (Kuper et al., 2014) 
gifted by Christoph 
Kuper and Wolfgang 
Neuhofer 

 

Oligonucleotides 
RT-PCR GAPDH Life Technologies Human Assay ID; 

Hs99999905_m1 
Mouse Assay ID; 
Mm99999915_g1 

RT-PCR Human GUSB Life Technologies Assay ID; 
Hs9999908_m1 

RT-PCR HPRT Life Technologies Human Assay ID; 
Hs99999909_m1 
Mouse Assay ID; 
Mm01545399_m1 

RT-PCR NFAT5 Life Technologies Human Assay ID; 
Hs00232437_m1 
Mouse Assay ID; 
Mm00467257_m1 

RT-PCR CCL2 Life Technologies Human Assay ID; 
Hs00234140_m1 
Mouse Assay ID; 
Mm00441242_m1 

RT-PCR CX3CL1 Life Technologies Human Assay ID; 
Hs00171086_m1 
Mouse Assay ID; 
Mm00436454_m1 

Software and Algorithms 
Flowjo software Treestar  
Imaris Bitplane  
Fiji/ ImageJ ImageJ  
GraphPad PRISM GraphPad PRISM  
R; Bioconductor packages Biobase, GEOquery 
and limma 

Gentleman et al., 
2004 
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Other 
eFluor 670; used for labelling UPEC Invitrogen Cat# 65-0840-85 
Human Myeloperoxidase Quantikine ELISA Kit R & D Systems Cat# DMYE00B 
Human CX3CL1/Fractalkine Quantikine ELISA Kit R & D Systems Cat# DCX310 
Human CCL2/MCP-1 Quantikine ELISA Kit R & D Systems Cat# DCP00 
Human IL-6 Quantikine ELISA Kit R & D Systems Cat# D6050 
Human TNF-alpha Quantikine ELISA Kit R & D Systems Cat# DTA00C 
Human IL-8/CXCL8 Quantikine ELISA Kit R & D Systems Cat# D8000C 
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Figure S5, related to Figure 5
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Figure S6, related to Figure 6
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Figure S7, related to Figure 7
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