14 research outputs found

    Genetic Complementation to Identify DNA Elements That Influence Complement Resistance in Leishmania chagasi

    Get PDF
    Past studies showed that Leishmania spp. promastigotes exhibit differential sensitivity to complement mediated lysis (CML) during development in vitro and in vivo. Leishmania chagasi promastigotes in cultures during logarithmic and stationary growth phases are CML-sensitive or CML-resistant when exposed to human serum, respectively, but only in cultures recently initiated with parasites from infected animals; serially passaged cultures become constitutively CML-sensitive regardless of growth phase. Building on these observations, a genetic screen was conducted to identify novel complement resistance factors of L. chagasi. A cosmid library containing genomic DNA was transfected into a promastigote line previously subjected to \u3e50 serial passages. Selection with human serum for CML resistance yielded 12 transfectant clones. Cosmids isolated from 7 of these clones conferred CML resistance when transfected into an independent, high-passage promastigote culture; at 12% human serum, the mean survival of transfectants was 37% (±11.6%), and that of control transfectants was about 1%. Inserts within the 7 cosmids were unique. Determination of the complete DNA sequence for 1 cosmid indicated that its 32-kilobase insert was 89% identical (overall) to a 31-kilobase region of Leishmania major chromosome 36, which is predicted to encode 6 genes, all of which encode hypothetical proteins

    Characterization of DNA Sequences that Confer Complement Resistance in \u3ci\u3eLeishmania chagasi\u3c/i\u3e

    Get PDF
    Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into highpassage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML

    Characterization of DNA Sequences that Confer Complement Resistance in \u3ci\u3eLeishmania chagasi\u3c/i\u3e

    Get PDF
    Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into highpassage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML

    Tumor Transcriptome Sequencing Reveals Allelic Expression Imbalances Associated with Copy Number Alterations

    Get PDF
    Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reduced Hamster Usage and Stress in Propagating \u3ci\u3eLeishmania chagasi\u3c/i\u3e Promastigotes Using Cryopreservation and Saphenous Vein Inoculation

    Get PDF
    Leishmania chagasi, a causal agent of visceral leishmaniasis, requires passage through lab animals such as hamsters to maintain its virulence. Hamster infection is typically accomplished via cardiac puncture or intraperitoneal injection, procedures accompanied by risks of increased animal stress and death. The use of the hamster model also necessitates a regular supply of infected animals, because L. chagasi parasites newly isolated from an infected hamster can be grown in culture for only several weeks before loss of function/phenotype occurs. In an effort to decrease animal usage and animal stress, experiments were performed to assess a more gentle inoculation procedure (saphenous vein inoculation) and the use of cryopreserved parasite cells for research experiments. Of 81 hamsters inoculated by the saphenous vein, 80 became infected as determined ante mortem, by display of clinical symptoms of leishmaniasis (onset of symptoms at 105 ± 22 days post-inoculation), and postmortem by the presence of parasites within the spleen. Splenic parasite load calculated for a subset (n 5 34) of infected hamsters was 124 to 26,177 Leishmania donovani infection units. Cryopreserved, and never-stored, cells were equivalent in all properties evaluated, including developmental changes in morphology during culture, culture growth rates, parasite resistance to serum-mediated lysis, and expression of developmentally regulated surface proteins major surface protease and promastigote surface antigen

    Characterization of DNA Sequences that Confer Complement Resistance in \u3ci\u3eLeishmania chagasi\u3c/i\u3e

    Get PDF
    Serial passage of axenically cultured Leishmania chagasi promastigotes results in a progressive diminution in resistance to complement-mediated lysis (CML), whereas high CML resistance is seen in infectious metacyclic promastigotes from the sandfly vector as well as metacyclic-like promastigotes within low-passage cultures at stationary growth phase. As we previously reported, in a screen seeking to identify novel genes involved in CML resistance: (1) a genomic cosmid library derived from DNA of CML-resistant L. chagasi promastigotes was transfected into highpassage (constitutively CML-sensitive) L. chagasi promastigotes; (2) transformants were screened for acquisition of CML-resistance; (3) multiple cosmid-transfectants exhibited partial CML resistance; and (4) the sequence for one of the cosmids (Cosmid 51) was determined. This report extends the analysis of Cosmid 51, and identifies by deletion analysis a subregion of the cosmid insert that is critical to the CML-resistance phenotype of Cosmid 51 transformants. We also report the sequence determination and initial CML-resistance activity of another cosmid that also confers partial resistance to CML

    Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg cells): the gateway to improved responses

    Get PDF
    Dendritic cells are an important target in cancer immunotherapy based on their critical role in antigen presentation and response to tumor development. The capacity of dendritic cells to stimulate anti-tumor immunity have led investigators to use these cells to mediate anti-tumor responses in a number of clinical trials. However, these trials have had mixed results. The typical method for generation of ex-vivo dendritic cells starts with the purification of CD14+ cells. Our studies identified a deficiency in the ability to generate mDC using CD14+ cells from cancer patients that corresponded with an increased population of monocytes with altered surface marker expression (CD14+HLA-DRlo/neg). Further studies identified systemic immune suppression and increased concentrations of CD14+HLA-DRlo/neg monocytes capable of inhibiting T cell proliferation and DC maturation. Together these findings strongly suggest that protocols aimed at immune stimulation via monocytes/dendritic cells, if optimized on normal monocytes or in systems without these suppressive monocytes, are unlikely to engender effective DC maturation in vitro or efficiently trigger DC maturation in vivo. This highlights the importance of developing optimal protocols for stimulating DCs in the context of significantly altered monocyte phenotypes in patients
    corecore