73 research outputs found

    Ethanol Pharmacokinetics in Neonates Secondary to Medication Administration

    Get PDF
    Purpose: Ethanol serves as a solvent and microbial preservative in oral liquid medications and is the second most commonly used solvent in liquid medications following water. Despite widespread use of ethanol in liquid medications for neonates, the pharmacokinetics and toxicity of ethanol in young children are not well described. The aim of the current study is to quantify blood ethanol levels in neonates secondary to oral ethanol containing medications. Methods: Neonates who received either oral phenobarbital (15% ethanol) and/or oral dexamethasone (30% ethanol) per standard of care were eligible for enrollment. A maximum of 6 blood samples per patient (4.5 mL total) were taken over the study period. Blood samples were collected via heel stick at the time of clinical laboratory collections or following a specific collection for study purposes. In addition, blood samples were collected from neonates receiving sublingual buprenorphine (30% ethanol) for neonatal abstinence syndrome from a separate clinical study. Blood ethanol levels were measured using a validated headspace gas chromatography-mass spectrometry method utilizing micro-volume ( ̴100uL) plasma samples. The limit of detection and lower limit of quantification for the assay were 0.1 mg/L and 0.5 mg/L respectively. Results: A total of 39 plasma samples from 15 neonates who were on ethanol containing medications were collected over the study period. Four neonates were exposed to phenobarbital and/or dexamethasone, while eleven neonates were exposed to buprenorphine alone or in combination with phenobarbital. Patients were exposed to an average of 71.6 mg/kg (range 13.1 to 215 mg/kg) of ethanol after a single dose of an ethanol containing medication. Blood ethanol levels were detectable in 98% (38/39) of samples, quantifiable in 67% (26/39) of samples, and ranged from below detection to 85.4 mg/L. Ethanol was rapidly cleared and did not accumulate with current dosing regimens. Conclusion: Ethanol intake secondary to medication administration varied widely. Blood ethanol levels in neonates were low and ethanol was eliminated rapidly after a single dose of oral medications that contained a sizable fraction of ethanol.https://jdc.jefferson.edu/petposters/1000/thumbnail.jp

    Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis.

    Get PDF
    Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterised by progressive destruction of intrahepatic bile ducts. The strongest genetic association is with HLA-DQA1*04:01, but at least three additional independent HLA haplotypes contribute to susceptibility. We used dense single nucleotide polymorphism (SNP) data in 2861 PBC cases and 8514 controls to impute classical HLA alleles and amino acid polymorphisms using state-of-the-art methodologies. We then demonstrated through stepwise regression that association in the HLA region can be largely explained by variation at five separate amino acid positions. Three-dimensional modelling of protein structures and calculation of electrostatic potentials for the implicated HLA alleles/amino acid substitutions demonstrated a correlation between the electrostatic potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/amino acid substitutions conferring PBC susceptibility/protection, highlighting potential new avenues for future functional investigation

    Characterisation of volatile organic compounds in hospital indoor air and exposure health risk determination

    Get PDF
    Several volatile organic compounds (VOCs) have impacts on human health, but little is known about the concentrations of VOCs in the hospital environment. This study characterised VOCs present in clinical assessment rooms. More than 600 samples of air were collected over 31 months (2017–2020) at two hospital sites in Leicester, United Kingdom, and analysed by comprehensive two-dimensional gas chromatography, making this the largest hospital environment database worldwide on VOCs and first such UK study. The most abundant VOCs found were 2-propanol, ethyl chloride, acetone and hexane, with respective mean concentrations of 696.6 μgm−3, 436.5 μgm−3, 83.9 μgm−3 and 58.5 μgm−3. Acetone, 2-propanol and hexane concentrations were 4, 9 and 30-fold higher respectively compared to similar studies performed in other hospitals. Our results showed that the most frequently detected VOCs, with the highest concentrations, were most likely released by healthcare activities, or related to ingress of vehicle emissions. Hazard quotient (HQ) and cancer risk (CR) were calculated to identify the potential risk of VOCs exposure to the health of healthcare workers. No HQs were measured above 1, compared to inhaled US EPA and OEHHA health guidelines for non-cancer chemicals. For both hospitals, trichloroethylene CR were calculated above 1E-06 by using inhaled US EPA cancer risk values, leading to possible risks to healthcare workers with long-term exposure. More studies of this type, including measurements of VOCs such as formaldehyde that we were unable to include in this study, are needed to better characterise exposures and risks, both to healthcare workers and patients

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    BACKGROUND AIMS: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. METHODS: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response ("responders"), 16 PBC patients with inadequate UDCA response ("nonresponders"), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes ("modules") associated with response status and the most highly connected genes ("hub genes") within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation ("latent factors") across all peripheral blood mononuclear cell subsets. RESULTS: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q<0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. CONCLUSIONS: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    Association of gut-related metabolites with respiratory symptoms in COVID-19: A proof-of-concept study

    Get PDF
    Gut-related metabolites have been linked with respiratory disease. The crosstalk between the gut and lungs suggests that gut health may be compromised in COVID-19. The aims of the present study were to analyze a panel of gut-related metabolites (acetyl-L-carnitine, betaine, choline, L-carnitine, trimethylamine, and trimethylamine N-oxide) in patients with COVID-19, matched with healthy individuals and patients with non-COVID-19 respiratory symptoms. As results, metabolites from this panel were impaired in patients with COVID-19 and were associated with the symptoms of breathlessness and temperature, and it was possible to differentiate between COVID-19 and asthma. Preliminary results showed that lower levels of betaine appeared to be associated with poor outcomes in patients with COVID-19, suggesting betaine as a marker of gut microbiome health

    A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC?

    Get PDF
    Obesity and non-alcoholic fatty liver disease (NAFLD) are contributing to the global rise in deaths from hepatocellular carcinoma (HCC). The pathogenesis of NAFLD-HCC is not well understood. The severity of hepatic steatosis, steatohepatitis and fibrosis are key pathogenic mechanisms, but animal studies suggest altered immune responses are also involved. Genetic studies have so far highlighted a major role of gene variants promoting fat deposition in the liver (PNPLA3 rs738409; TM6SF2 rs58542926). Here, we have considered single-nucleotide polymorphisms (SNPs) in candidate immunoregulatory genes (MICA rs2596542; CD44 rs187115; PDCD1 rs7421861 and rs10204525), in 594 patients with NAFLD and 391 with NAFLD-HCC, from three European centres. Associations between age, body mass index, diabetes, cirrhosis and SNPs with HCC development were explored. PNPLA3 and TM6SF2 SNPs were associated with both progression to cirrhosis and NAFLD-HCC development, while PDCD1 SNPs were specifically associated with NAFLD-HCC risk, regardless of cirrhosis. PDCD1 rs7421861 was independently associated with NAFLD-HCC development, while PDCD1 rs10204525 acquired significance after adjusting for other risks, being most notable in the smaller numbers of women with NAFLD-HCC. The study highlights the potential impact of inter individual variation in immune tolerance induction in patients with NAFLD, both in the presence and absence of cirrhosis

    Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis

    Get PDF
    Background Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia. Methodology/Principal Findings We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects. Conclusions/Significance A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control

    Chapter 4 Design Options, Implementation Issues and Evaluating Success of Ecologically Engineered Shorelines

    Get PDF
    Human population growth and accelerating coastal development have been the drivers for unprecedented construction of artificial structures along shorelines globally. Construction has been recently amplified by societal responses to reduce flood and erosion risks from rising sea levels and more extreme storms resulting from climate change. Such structures, leading to highly modified shorelines, deliver societal benefits, but they also create significant socioeconomic and environmental challenges. The planning, design and deployment of these coastal structures should aim to provide multiple goals through the application of ecoengineering to shoreline development. Such developments should be designed and built with the overarching objective of reducing negative impacts on nature, using hard, soft and hybrid ecological engineering approaches. The design of ecologically sensitive shorelines should be context-dependent and combine engineering, environmental and socioeconomic considerations. The costs and benefits of ecoengineered shoreline design options should be considered across all three of these disciplinary domains when setting objectives, informing plans for their subsequent maintenance and management and ultimately monitoring and evaluating their success. To date, successful ecoengineered shoreline projects have engaged with multiple stakeholders (e.g. architects, engineers, ecologists, coastal/port managers and the general public) during their conception and construction, but few have evaluated engineering, ecological and socioeconomic outcomes in a comprehensive manner. Increasing global awareness of climate change impacts (increased frequency or magnitude of extreme weather events and sea level rise), coupled with future predictions for coastal development (due to population growth leading to urban development and renewal, land reclamation and establishment of renewable energy infrastructure in the sea) will increase the demand for adaptive techniques to protect coastlines. In this review, we present an overview of current ecoengineered shoreline design options, the drivers and constraints that influence implementation and factors to consider when evaluating the success of such ecologically engineered shorelines

    Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans.

    Get PDF
    Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues

    Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

    Get PDF
    We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TO
    corecore