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Simple Summary: Many more people are dying each year from primary liver cancers arising in
obesity-related fatty liver disease. Often these cancers are a consequence of fatty liver disease
progression, with inflammation, scarring and cirrhosis. Less often, cancers develop in the presence of
fat without cirrhosis. Evidence from animal models suggests the immune response to fat is important.
We have explored genetic variations in candidate immunoregulatory genes. Our study of nearly
one-thousand patients with fatty liver disease, comparing 391 with cancers to 594 without, indicates
that genetic variation in a gene (PDCD1) that codes for the T cell receptor PD-1 may be important.
Inherited variations that affect function of immunoregulatory proteins like PD-1 may underpin
why some patients with fatty liver disease—whether they have cirrhosis or not—are more likely to
develop liver cancer.

Abstract: Obesity and non-alcoholic fatty liver disease (NAFLD) are contributing to the global
rise in deaths from hepatocellular carcinoma (HCC). The pathogenesis of NAFLD-HCC is not
well understood. The severity of hepatic steatosis, steatohepatitis and fibrosis are key pathogenic
mechanisms, but animal studies suggest altered immune responses are also involved. Genetic studies
have so far highlighted a major role of gene variants promoting fat deposition in the liver (PNPLA3
rs738409; TM6SF2 rs58542926). Here, we have considered single-nucleotide polymorphisms (SNPs)
in candidate immunoregulatory genes (MICA rs2596542; CD44 rs187115; PDCD1 rs7421861 and
rs10204525), in 594 patients with NAFLD and 391 with NAFLD-HCC, from three European centres.
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Associations between age, body mass index, diabetes, cirrhosis and SNPs with HCC development
were explored. PNPLA3 and TM6SF2 SNPs were associated with both progression to cirrhosis and
NAFLD-HCC development, while PDCD1 SNPs were specifically associated with NAFLD-HCC
risk, regardless of cirrhosis. PDCD1 rs7421861 was independently associated with NAFLD-HCC
development, while PDCD1 rs10204525 acquired significance after adjusting for other risks, being
most notable in the smaller numbers of women with NAFLD-HCC. The study highlights the potential
impact of inter individual variation in immune tolerance induction in patients with NAFLD, both in
the presence and absence of cirrhosis.

Keywords: primary liver cancer; hepatocellular carcinoma; metabolic syndrome; genetic predisposi-
tion; single-nucleotide polymorphism; PDCD1; PD-1; PNPLA3; TM6SF2

1. Introduction

Commonly arising on a background of cirrhosis, the geographic variations in global
incidence and mortality attributed to hepatocellular carcinoma (HCC) have largely reflected
differences in the prevalence of chronic viral hepatitis, namely, hepatitis B (HBV) and
hepatitis C (HCV) [1]. Alcohol-related liver disease (ARLD) has also been recognised as
a significant contributor to risk, particularly in Western nations [1]. With over hundreds
of thousands of new cases and deaths per year, for a cancer where the major risk factors
are known and many cases potentially preventable or treatable if detected at an early
stage, the needs to better understand this and exploit opportunities to intervene and
improve outcomes are widely recognised. In some countries with a particularly high
incidence of HCC, population-level interventions have had an impact, with reductions in
HCC mortality consequent to HBV immunisation [2] or early HCV-HCC detection and
treatment [3]. The introduction of effective antiviral therapies for both HBV and HCV have
also heralded major scientific advances [4,5]. It is disappointing, therefore—that in contrast
to the majority of other cancers—HCC deaths globally have continued to increase [6].

Epidemiological studies in the Western nations have highlighted a close association
between HCC and the rising prevalence of obesity, associated with the metabolic syn-
drome [7]. Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of this
syndrome, and while primary care management targeting diabetes and hypertension [8],
as well as public health campaigns to reduce smoking [9], have had a significant impact on
cardiovascular deaths, the prevalence, morbidity and mortality consequent to NAFLD and
NAFLD-HCC have escalated. NAFLD is estimated to affect 25% of Western adults [10].
Although the majority of those have steatosis without significant inflammation and fibrosis,
the prevalence is so high that even with only a minority of patients developing progressive
disease, NAFLD is now one of the commonest causes of cirrhosis and HCC [7]. In patients
with known NAFLD cirrhosis who are fit for therapeutic intervention, HCC surveillance
with bi-annual liver ultrasound is widely endorsed, although views of its cost effectiveness
and benefit are frequently debated [11]. One of the consequences of ineffective or failed
surveillance is that NAFLD-HCC is more often detected at an advanced stage, where older
age and metabolic syndrome associated comorbidities further limit treatment options.
There is a pressing need to develop a better understanding of why some patients with
NAFLD develop HCC—both in the presence or absence of cirrhosis—if we are to identify
clinically useful biomarkers that will inform intervention strategies or more cost-effective
approaches to surveillance and early detection.

Previous studies have recognised that NAFLD progression to advanced fibrosis or
cirrhosis is associated with diabetes, overweight, male sex and advanced age, as well as
a genetic predisposition [12,13]. Although there have not been genome wide association
studies (GWAS) reporting genetic variables associated with NAFLD-HCC risk, single-
nucleotide polymorphisms (SNPs) in a number of candidate genes associated with NAFLD
development have also been studied in the context of NAFLD-HCC. SNPs in genes that
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promote fat accumulation in hepatocytes as well as reportedly promoting NAFLD-HCC
include rs738409 in patatin-like phospholipase domain-containing 3 (PNPLA3) [13,14]
and rs58542926 in transmembrane-6 superfamily member-2 (TM6SF2) [7,15–17]. The
sensitivities and specificities of individual SNPs such as these for determining HCC risk in
NAFLD is poor. However, their clinical utility may be improved using combinations of risk
associated SNPs. A polygenic risk score (PRS) combining genetic variations in PNPLA3
and TM6SF2, with others in membrane bound O-acyltransferase domain containing 7
(MBOAT7), glucokinase regulator (GCKR) and 17β-hydroxysteroid dehydrogenase type 13
(HSD17B13), has recently been proposed [18].

While increased liver fat stores appear to increase the risk of HCC development [18],
data from animal models and human studies have also highlighted a role of the immune
environment in the modulation of cancer risk in NAFLD [7]. Here, in the hope of enhancing
our understanding of NAFLD-HCC in a clinically translatable fashion, we have explored
SNPs in a number of candidate HCC immunoregulatory genes, in addition to those in
PNPLA3 and TM6SF2, in patients with NAFLD and NAFLD-HCC. The SNPs selected were
based on previous reports and included rs2596542 in Major Histocompatibility Complex
class I polypeptide related sequence A (MICA) [19], rs187115 in Cluster of differentiation 44
(CD44) [20–22], as well as rs7421861 and rs10204525 in programmed cell death-1 (PDCD1)
which encodes PD-1 [23–33]. PDCD1 rs10204525 C < T is common in Asian populations,
with functional implications for patients with HBV. The data presented here highlight
genetic variability in PDCD1 associated with HCC risk in NAFLD in European patients.
The clinical implications are discussed.

2. Materials and Methods
2.1. Patients

This study included a total of 594 NAFLD Caucasian patients derived from the Euro-
pean NAFLD Registry [34] who were considered as controls, and 391 patients with HCC
attributed to NAFLD. The primary cohort was from the Newcastle upon Tyne Hospitals
NHS Foundation Trust, Newcastle, UK (controls 416, HCC 198). Recruitment of patients
with HCC was from 1 January 2004 until 3 December 2019, with a minimum follow-up
period of 12 months, until 31 December 2020. There were two replication cohorts, from
Inselspital Hospital, Bern, Switzerland (76 controls, 84 HCC), and Milan, Italy (102 controls
with severe fibrosis, 109 HCC), as approved by each institution. All patients signed a con-
sent form. The Berne patients have been recruited since 2010, with follow up ongoing until
death or transplantation. For the Milan patients, those with cancer were recruited between
2010 and 2016. The Milan control patients were those with NAFLD and severe fibrosis
or cirrhosis, recruited between 2018 and 2020. There was no subsequent follow up of the
Milan patients for research purposes. Demographic data included age and sex, with body
mass index (BMI) and presence of type 2 diabetes (T2DM) recorded. Each of the controls
had a documented history of NAFLD, with an otherwise negative liver screen (HBV and
HCV serology, serum ferritin, autoantibody screen, and alpha-1-antitrypsin level). Patients
classed as having NAFLD-HCC were men or women with evidence of a fatty liver on
biopsy or imaging or having the presence of at least T2DM or BMI > 30, with an otherwise
negative liver screen, drinking <21 or 14 units of alcohol per week, respectively, for at
least 5 years prior to their first presentation with liver disease. The diagnosis of HCC was
established through noninvasive assessment or histologically according to EASL clinical
practice guidelines [1].

2.2. Genotyping Strategy

DNA was prepared as previously described [13]. SNPs in the candidate genes (PN-
PLA3 rs738409, TM6SF2 rs58542926, MICA rs2596542, CD44 rs187115, PD-1 rs7421861
and rs10204525), were genotyped by taqman assay (#4351379, Applied Biosystems Inc.,
Waltham, MA, USA) according to the manufacturers protocol or determined by GWAS as
reported previously [35]. Taqman assay details are summarised in Table S1.
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2.3. Statistical Analysis

Associations between SNPs and HCC status were analysed by logistic regression
in PLINK v1.9 [36], with age, sex, cirrhosis and diabetes status included as additional
covariates. Multivariate analyses were expressed as odds ratio (OR) with 95% confidence
intervals (CI). Logistic regression was repeated conditioned on the genotypes of both
rs738409 and rs58542926.A subset of non-cirrhotic individuals were analysed separately
by similar methods. A fixed-effect meta-analysis was performed with METAv1.7 [37] on
Newcastle, Berna and Milan cohorts using the log Odds Ratios (lnORs) and standard errors
from the individual cohort analyses. Haplotype analysis for PDCD1 SNPs was carried out
using software UNPHASED, as previously described [38]. In the patients with liver cancer,
associations were also explored with clinicopathological variables and survival, by Kaplan
Meier and Cox regression analyses using SPSS version 25 (IBM Corp., Armonk, NY, USA)
licensed to Newcastle University.

2.4. Power Calculation

A power calculation of sample size to evaluate the effect of genetic variation on HCC
risk in NAFLD was performed using the “case–control for discrete traits” option in GPC
software (http://zzz.bwh.harvard.edu/gpc/ (accessed on 3 March 2021)). To perform
this, the prevalence of NAFLD-HCC in a NAFLD population similar to our own was
estimated as 0.5%, based epidemiological studies data [39], but also from HCC incidence
as reported in large cohorts included in recent therapeutic trials for NASH [40,41]. The
minor allele frequencies used were those of our own NAFLD control population. These
power calculations are summarised in Supplementary Table S2. In the combined cohorts,
there was an estimated 80% power to detect a significant allelic relative risk of ≥1.3, falling
to 55–60% in the Newcastle cohort alone. At a level of relative risk ≥ 1.4, the power was
95% in our combined cohort and 76–80% in the Newcastle cohort.

Graphical abstract was designed using BioRender software (https://biorender.com/
accessed on 2 February 2021; Toronto, ON, Canada).

3. Results
3.1. The Newcastle Patient Cohorts Clinical Information
3.1.1. The NAFLD Control and NAFLD-HCC Patient Characteristics

The NAFLD control patients included all patients, regardless of age, sex or stage of
liver disease, attending the NAFLD specialist clinic in Newcastle who consented to take
part in clinical research studies. The cohort was representative of the patients seen. The
patients with HCC were also representative, again including all patients who consented
to the use of their tissues and data for research. The progression of NAFLD to HCC in
Newcastle is known to be associated with increasing age, male sex, T2DM and the presence
of cirrhosis—each of which were highly significantly different between the two groups, as
summarised in Table 1. Notably, although increasing BMI is well established as a risk factor
for NAFLD progression to cirrhosis, BMI was significantly reduced in NAFLD-HCC cases
compared to NAFLD controls. The lower BMI may reflect older age and/or sarcopenia, or
be a consequence of cancer development, rather than being a predisposing feature—falling
particularly in those with more advanced TNM stage (Table S3A). Note, however, that the
BMI was lower across all TNM stages relative to controls, particularly in the non-cirrhotic
(NC) cases (Table S3B).

3.1.2. The Newcastle NAFLD-HCC Cohort, Comparing Those with and without Cirrhosis

The features of the NAFLD-HCC cases are summarised in Supplementary Table S4. In
61.1%, HCC arose in the presence of cirrhosis. As previously reported, the median age of
individuals with NC NAFLD-HCC was significantly greater [42]. Tumours were also more
advanced in terms of size, with more patients presenting with TNM stage III or IV disease.
Notably though, 48% of patients with NC NAFLD-HCC presented with a single large
tumour, with only 6.5% classed as TNM Stage II, compared to 35.5% and 36.4% for cirrhotic

http://zzz.bwh.harvard.edu/gpc/
https://biorender.com/
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NAFLD-HCC cases, respectively. These differences in TNM stage were highly significant.
Furthermore, the NC NAFLD-HCC cases had relatively preserved liver function, as shown
by a number of the parameters (albumin, bilirubin, ascites, encephalopathy, prothrombin
time and Childs Pugh Stage) presented in Supplementary Table S4. Consequently, despite
their advanced age and 36.4% receiving only supportive care, NC NAFLD-HCC patients
were twice as likely to be treated surgically. Survival in NAFLD-HCC cases was mostly
determined by stage (tumour number, size and portal vein invasion) at presentation rather
than the presence of cirrhosis, as summarised in Supplementary Table S5. Age, ECOG PST
and tumour differentiation were also significant in multivariate Cox Regression analyses.

Table 1. Demographic characteristics of Newcastle NAFLD and NAFLD-HCC cohorts.

Phenotype Group NAFLD
(n = 416)

NAFLD/HCC
(n = 198) p-Value 1

Age (Mean ± SD) 52.97 ± 0.58 72.21 ± 0.65 <0.0001

Gender male (%)
female (%)

232 (55.8)
184 (42.8)

157 (79.3)
41 (20.7) <0.0001

BMI (Mean ± SD) 35.03 ± 0.28 31.96 ± 0.44 <0.0001

Diabetes no (%)
yes (%)

198 (48.1)
214 (51.9)

60 (30.3)
138 (69.7) <0.0001

Cirrhosis no (%)
yes (%)

353 (84.9)
63 (15.1)

77 (38.9)
121 (61.1) <0.0001

1 p-values estimated by Mann–Whitney or Chi Square tests for continuous or categorical datasets respectively.

Raised BMI and T2DM were expectedly common in the NAFLD-HCC cohort overall.
The lower BMI in NC NAFLD-HCC cases has been mentioned above, but also of note,
T2DM was less prevalent, being present in 59.7% of NC cases compared to 76.0% of cirrhotic
cases. While these features are widely associated with cancer risk, it is perhaps not so
surprising that they were less striking in the NC NAFLD-HCC cases, given these are also
strongly associated with progression to cirrhosis, and by definition the NC cases do not
have cirrhosis. The differences do suggest, however, that the key genes and/or pathways
in obesity and T2DM promoting NAFLD progression to cirrhosis, versus those promoting
NAFLD progression to HCC, are not necessarily the same. The likelihood that other
pro-carcinogenic pathways may play a relatively larger role in NAFLD patients without
cirrhosis has been previously suggested [43].

The diagnosis of HCC was confirmed histologically in 93/198 cases (47.0%). Histopathology
features were often heterogenous even within the biopsies, but the more common architec-
tural type, as well as any subtype described [44], was attributed where possible (n = 90).
Apart from fibrolamellar cases being restricted to NC only, the distribution of other sub-
types was similar in cirrhotic versus NC cancers. Trabecular architecture was common,
followed by solid/compact tumours. In some cases, features of both hepatocellular and
cholangiocarcinoma were evident, and these were classed as mixed tumours. In over 60%
no subtype was reported. In those with a subtype noted, steatohepatitic HCC (SH-HCC)
was the most common, present in 20–25% of cases regardless of cirrhosis. In this series, there
were no cases described as macrotrabecular massive, chromophobe or neutrophil-rich.
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3.2. The Newcastle Patients’ Cohort Genotype Data
3.2.1. PNPLA3 rs738409 C > G and TM6SF2 rs58542926 C > T Genotyping Data

All of the genotypes—for fat and immunoregulatory genes—were in Hardy–Wienberg
equilibrium in the Newcastle cases and controls cohort. PNPLA3 rs738409 and TM6SF2
rs58542926 are two well-studied SNPs where the minor alleles are reported to be associated
with the development of HCC in fatty liver attributed to NAFLD or ARLD [13,45]. The
allele frequency data for these two SNPs in the Newcastle NAFLD and NAFLD-HCC
cohorts is shown in the first two column clusters of Figure 1 and Supplementary Table S6.
In Europe, 78% of people carry at least one copy of the PNPLA3 rs738409 “C” allele (https:
//www.ncbi.nlm.nih.gov/ (accessed on 18 January 2021)), with just 5% being homozygous
for the G allele. Figure 1 shows that the percentage of patients carrying the C allele falls
quite markedly in patients with NAFLD, with and without HCC in Newcastle. Notably,
>20% of those with NAFLD-HCC were homozygous for the variant G allele. The differences
in PNPLA3 genotype assessed by logistic regression were significant, with statistical tests
assessing dominant and recessive models of inheritance shown in Supplementary Table
S7. For TM6SF2 rs58542926 (yellow bars Figure 1), both individuals heterozygous or
homozygous for the variant T allele were significantly elevated in patients with NAFLD-
HCC, although—as expected—the minor allele frequency TM6SF2 rs58542926 was lower
than that of PNPLA3.
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Figure 1. Allele frequencies of candidate SNPs in Newcastle cohorts.

Figure 1 The figure shows the allelic frequency (wild type, heterozygous mutant,
homozygous mutant) of different candidate SNPs in fat-regulatory genes (PNPLA3 and
TM6SF2) and immune-regulatory genes (CD44, MICA and PDCD1) in NAFLD (n = 416;
solid bars) and NAFLD-HCC (n = 198; dotted bars) patients from Newcastle cohort.

3.2.2. The Newcastle Patients’ Cohort Genotype Data—Immunoregulatory Genes

There was no evidence that any of the candidate immunoregulatory genes were
associated with the development of NAFLD, when comparing the minor allele frequency
(MAF) to controls from the European NAFLD GWAS [34]. The MAF for each of the SNPs
(bar rs10204525 which failed quality control) are shown in Supplementary Table S8. There
were no statistically significant differences in genotypes for either CD44 rs187115 or MICA
rs2596542 when comparing the NAFLD versus NAFLD-HCC cases (grey bars Figure 1;
Supplementary Table S7). Considering the SNPs tested in PDCD1 however, there was quite
a difference in allele frequencies for rs7421861 A > G, with the wild type A allele being

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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significantly more common in patients with NAFLD-HCC. This was in keeping with the
variant allele protecting against the development of HCC in NAFLD, as the wild type A
allele was more common in the patients with cancer. The PDCD1 rs10204525 T allele was
not common and was not significantly different in NAFLD-HCC versus NAFLD controls.

3.2.3. The Newcastle Cohort-Multivariate Analyses Exploring Associations with NAFLD-HCC

For each of the fat or immunoregulatory SNPs, we went on to explore their association
with the development of HCC in NAFLD, independently of the other established risk
factors for NAFLD-HCC—namely, age, gender, the presence of T2DM and the presence of
cirrhosis. These data are summarised in Table 2. Of note, while both PNPLA3 and TM6SF2
variants are widely acknowledged as promoting NAFLD-HCC, neither was independently
significant of all the other risk factors in this single centre cohort. The proposed association
of PDCD1 rs7421861, with the variant allele less common in NAFLD-HCC, remained highly
significant when including each of the other risk factors. Notably, the PDCD1 rs10204525
C > T SNP, acquired significance after adjusting for the other risk factors. Inspection of
the data (Supplementary Table S9) indicated that the PDCD1 rs10204525 T allele was more
common in Newcastle cohort females with NAFLD-HCC (15/41; 36.6%) compared to
female NAFLD controls (30/184; 16.8%, p = 0.003, Chi Square).

Table 2. Allelic analyses, including multivariate regression and conditioning on the fat-regulatory genes.

Gene Identity p Value OR
Conditioned on PNPLA3 + TM6SF2

p Value OR

PNPLA3 C > G rs738409 0.01750 * 1.33 (1.05–1.68) NA NA
TM6SF2 C > T rs58542926 0.00531 ** 1.60 (1.15–2.22) NA NA

MICA T > C rs2596542 0.37940 0.89 (0.68–1.16) 0.3741 0.89 (0.68–1.16)
CD44 C > T rs187115 0.42710 1.11 (0.86–1.44) 0.4155 1.11 (0.86–1.45)

PDCD1 A > G rs7421861 0.00014 *** 0.59 (0.45–0.78) 0.000465 *** 0.61 (0.47–0.81)
PDCD1 C > T rs10204525 0.16470 1.31 (0.90–1.91) 0.1838 1.29 (0.88–1.91)

Age, Sex, Cirrhosis, T2DM

PNPLA3 C > G rs738409 0.06432 1.49 (0.98–2.26) NA NA
TM6SF2 C > T rs58542926 0.48770 0.82 (0.47–1.44) NA NA

MICA T > C rs2596542 0.84010 0.95 (0.60–1.52) 0.9079 0.97 (0.61–1.56)
CD44 C > T rs187115 0.37700 1.23 (0.77–1.96) 0.3132 1.27 (0.80–2.04)

PDCD1 A > G rs7421861 0.00152 * 0.49 (0.31–0.76) 0.001514 ** 0.49 (0.31–0.76)
PDCD1 C > T rs10204525 0.02212 * 2.11 (1.11–3.99) 0.007101 ** 2.49 (1.28–4.86)

p-values * < 0.05; ** < 0.01; *** < 0.001.

Considering the possibility of a risk PDCD1 haplotype, Linkage Disequilibrium analy-
ses between the two PDCD1 SNPs revealed a D’ value of 1 an R2 of 0.0487329. The low R2

value reflects the low frequency of the rs10204525 T allele (0.1) relative to the rs7421861
A allele (0.7). However, when the rarer rs10204525 T allele was present, it was always
inherited with the more common rs7421861 A allele. These data and haplotype analyses are
summarised in Supplementary Table S10, supporting the PDCD1 rs7421861 “A” allele as
being the one associated with greatest risk. It would appear, although numbers are small,
that the relatively minor contribution of the PDCD1 rs10204525 T allele, always inherited
with the rs7421861 A allele, may be more relevant in women in the Newcastle cohort.

We went on to condition the analyses of the immunoregulatory SNPs on the PNPLA3
and TM6SF2 genotypes. The analyses yielded similar results, also shown in Table 2. In
the conditioned univariate analysis, the protective effect of PDCD1 rs7421861 minor allele
remained strikingly significant, after adjusting for age, sex, cirrhosis and T2DM. For PDCD1
rs10204525, where the presence of the variant allele acquired significance after adjusting
for age, sex, cirrhosis and T2DM, the odds ratio and significance after conditioning on the
fat regulatory genes was enhanced.
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3.2.4. The Newcastle Cohort—Genotype Associations within the Cirrhotic Versus
Non-Cirrhotic NAFLD-HCC Cases

Differences in genotype associations within cases classed as cirrhotic or NC were
explored, and these are summarised in Table 3. Although the PNPLA3 rs738409 variant
G allele is undoubtedly more frequent in cancers compared to controls, there was also a
significant difference between the cirrhotic versus the non-cirrhotic cases with NAFLD-
HCC (red text Table 3, p < 0.0001). As PNPLA3 rs738409 is associated with advanced
NAFLD [35], this was not so surprising. Viewing the groups with the non cancer cases
also broken down into those with and without cirrhosis confirmed that the most striking
associations of both the PNPLA3 and the TM6SF2 variants were with the presence of
cirrhosis, rather than with the presence of cancer. As previously reported, the HCC risk
associated with these two SNPs is largely mediated by fibrosis, although in larger cohorts
it is possible to discern an impact partially independent of fibrosis [18]. In contrast, the
prevalence of the PDCD1 alleles associated with elevated cancer risk (rs7421861 A allele
and PDCD1 rs10204525 T allele, green text Table 3) was clearly associated with HCC, in
both the presence and absence of cirrhosis.

Table 3. Genotype distribution between cirrhotic and non-cirrhotic (NC) NAFLD and NAFLD-
HCC patients.

NAFLD Control NAFLD-HCC

Total
(%)

NC
(%)

Cirrhotic
(%)

Total
(%)

NC
(%)

Cirrhotic
(%)

PNPLA3
rs738409

CC 170 (40.9) 156 (44.2) 14 (22.2) 67 (33.84) 35 (46.1) 32 (26.2)
CG 184 (44.2) 150 (42.5) 34 (54.0) 85 (42.93) 29 (38.2) 56 (45.9)
GG 62 (14.9) 47 (13.3) 15 (23.8) 46 (23.23) 12 (15.8) 34 (27.9)

TM6SF2
rs58542926

CC 323 (77.6) 281 (79.6) 42 (66.7) 132 (66.7) 57 (74) 75 (62.0)
CT 85 (20.4) 67 (19) 18 (28.6) 60 (30.3) 19 (24.7) 41 (33.9)
TT 8 (2) 5 (1.4) 3 (4.8) 6 (3) 1 (1.3) 5 (4.1)

CD44
rs187115

TT 175 (42.1) 150 (42.5) 25 (39.7) 79 (39.9) 27 (35.1) 52 (43)
CT 197 (47.3) 165 (46.7) 32 (50.8) 96 (48.5) 40 (51.9) 56 (46.3)
CC 44 (10.6) 38 (10.8) 6 (9.5) 23 (11.6) 10 (13) 13 (10.7)

MICA
rs2596542

CC 183 (44) 159 (45) 24 (38.1) 92 (46.9) 31 (41.3) 61 (50.4)
CT 190 (45.7) 158 (44.8) 32 (50.8) 89 (45.4) 37 (49.3) 52 (43)
TT 43 (10.3) 36 (10.2) 7 (11.1) 15 (7.7) 7 (9.3) 8 (6.6)

PDCD1
rs7421861

AA 180 (43.3) 155 (43.9) 25 (39.7) 126 (63.6) 50 (64.9) 76 (62.8)
AG 189 (45.4) 159 (45) 30 (47.6) 53 (26.8) 22 (28.6) 31 (25.6)
GG 47 (11.3) 39 (11) 8 (12.7) 19 (9.6) 5 (6.5) 14 (11.6)

PDCD1
rs10204525

CC 345 (82.9) 289 (81.9) 56 (88.9) 154 (78.6) 56 (73.7) 98 (81.7)
CT 66 (15.9) 59 (16.7) 7 (11.1) 38 (19.4) 18 (23.7) 20 (16.7)
TT 5 (1.2) 5 (1.4) 0 (0) 4 (2) 2 (2.6) 2 (1.7)

We went on to analyse genotypes in a subgroup restricted to controls and cases without
cirrhosis. These analyses, including 353 NC NAFLD controls and 78 NC NAFLD-HCC pa-
tients, are summarised in Supplementary Table S11. In the NC cases, the PDCD1rs7421861
G allele was again protective against HCC. Furthermore, significance was retained after
including age, gender and T2DM by regression, as well as after conditioning on PNPLA3
and TM6SF2.

There were no overarching genotype associations with any particular architectural or
histological subtype of HCC, although there were notable subtype associations within the
NC HCC cases. Of 12 classed as SH-HCC, nine were homozygous and three heterozygous
for the PDCD1 rs7421861 “A” allele. Notably, 11/12 also carried the CD44 rs187115 C allele.
The clear cell subtype was rare, but both cases were homozygous for these named PDCD1
and CD44 alleles. The findings were statistically significant (PDCD1 rs742861 p = 0.045;
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CD44 rs187115 p-0.009; Chi Square Exact test). While interesting, much larger numbers of
cases with tumour histology would need to be systematically studied to attribute robust
biological relevance to these observations.

3.3. Berne and Milan NAFLD and NAFLD-HCC Cohorts

Focusing on the predisposition to HCC development in patients with NAFLD, we
went on to explore the fat and immunoregulatory SNPs in two additional European cohorts
of control NAFLD and NAFLD-HCC cases, from Berne in Switzerland and Milan in
Italy. The demographic and NAFLD relevant clinical data for the controls versus patients
with HCC are presented in Table 4. In these smaller cohorts, not all the variables were
significantly different. Although the trends were similar to the larger Newcastle cohort,
there were some differences to note. Compared to Newcastle, the Berne control cases were
similar, but the Berne NAFLD-HCC cases were younger, fewer were women and fewer
had T2DM. The Milan control cohort was older, compared to Newcastle, with a lower BMI
and a much greater prevalence of cirrhosis. The NAFLD-HCC Milan cohort was similar to
that of Berne, with younger patients, with a lower BMI, less T2DM and a higher prevalence
of cirrhosis.

Table 4. Demographic characteristics of Berne and Milan NAFLD and NAFLD-HCC cohorts.

Newcastle Cohort Berne Cohort Milan Cohort *

Phenotype NAFLD
(n = 416)

NAFLD-
HCC

(n = 198)

NAFLD
(n = 76)

NAFLD-
HCC

(n = 84)
p Value NAFLD

(n = 102)

NAFLD-
HCC

(n = 109)
p Value

Age (Mean ± SD) 53.0 ± 0.6 72.2 ± 0.7 53.7 ± 1.3 66.7 ± 0.9 <0.0001 63.7 ± 1.1 66.9 ± 0.8 0.074
Gender

(%)
male

female
232 (55.8)
184 (42.8)

157 (79.3)
41 (20.7)

46 (60.5)
30 (39.5)

80 (95.2)
4 (4.8) <0.0001 47 (52.2)

43 (47.8)
88 (81.5)
20 (18.5) <0.0001

BMI (Mean ± SD) 35.0 ± 0.3 32.0 ± 0.4 32.7 ± 0.6 29.6 ± 0.6 <0.0001 30.0 ± 0.5 29.4 ± 0.5 0.445
Diabetes

(%)
no
yes

198 (48.1)
214 (51.9)

60 (30.3)
138 (69.7)

35 (46.1)
41 (53.9)

47 (56.0)
37 (44.0) 0.211 34 (40.5)

50 (59.5)
45 (44.6)
56 (55.4) 0.577

Cirrhosis
(%)

no
yes

353 (84.9)
63 (15.1)

77 (38.9)
121 (61.1)

55 (72.4)
21 (27.6)

15 (17.9)
69 (82.1) <0.0001 6 (7.0)

80 (93.0)
16 (15.5)
87 (84.5) 0.068

p-values estimated by Mann–Whitney or Chi Square tests for continuous or categorical data sets, respectively. * some categorical
data unavailable.

Compared to Newcastle, the differences in the Milan cohort were at least in part due
to differences in selection criteria, as these were patients recruited for a case–control study,
as previously described [43]. The patients with NAFLD-HCC were representative of cases
seen in that hospital between 2010 and 2016, while the NAFLD controls were not—these
were recruited based on the presence of advanced fibrosis or cirrhosis in 2018–2020. The
older age and lower BMI in the Milan controls may also be reflective of that selection
bias. The Berne patients have been recruited from 2010, with both cases and controls
being reflective of patients referred to that hospital. The differences in the cancer patients
between the three institutions may reflect country differences. However, the largest cohort
in Newcastle was recruited at a tertiary centre where all the patients regardless of age,
fitness or stage of cancer were referred, from a large catchment area in the northeast of
England. The cohorts from Berne and Milan may not have been as inclusive, potentially
influenced by local referral practices (younger, fitter, with less diabetes and less obesity). As
the Berne and Milan cohorts were relatively small compared to Newcastle, the differences
were noted rather than interpreted further.

In the Berne and Milan cohorts, however, none of the allele frequencies—for either fat
regulatory or immunoregulatory SNPs—was significantly different comparing NAFLD
controls and NAFLD-HCC cases. The genotype frequencies are shown in Supplementary
Table S12, with statistical analysis in Supplementary Table S13.
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3.4. Newcastle, Berne and Milan NAFLD and NAFLD-HCC Cohorts Combined

The combined cohort data is summarised in Table 5. The meta-analysis for the PNPLA3,
TM6SF2 and the PDCD-1 SNPs, also conditioned on PNPLA3 and TM6SF2 is shown in
Table 6.

Table 5. The demographic characteristics of the combined European cohort.

Combined Cohorts Group NAFLD
(n = 594)

NAFLD-HCC
(n = 391) p Value

Age (Mean ± SD) 54.74 ± 0.50 69.52 ± 0.47 <0.0001

Gender male (%)
female (%)

325 (55.8)
257 (44.2)

325(83.1)
66 (16.9) <0.0001

BMI (Mean ± SD) 33.99 ± 0.25 30.78 ± 0.30 <0.0001

Diabetes no (%)
yes (%)

267 (46.7)
305 (53.3)

152 (39.6)
232 (60.4) <0.030

Cirrhosis no (%)
yes (%)

414 (71.6)
164 (28.4)

108 (28.0)
278 (72.0) <0.0001

Table 6. META analyses in the combined European cohort.

Gene rs Identity p Value OR Condition on
PNPLA3+TM6SF2

PNPLA3 rs738409 0.043946 1.20 (1.00–1.43) NA NA
TM6SF2 rs58542926 0.018524 1.37 (1.05–1.77) NA NA
PDCD1 rs7421861 0.026279 0.79 (0.65–0.97) 0.044663 0.81
PDCD1 rs10204525 0.123195 1.30 (0.93–1.83) 0.137854 1.30

Age, Gender, Cirrhosis, T2DM

PNPLA3 rs738409 0.231807 1.18 (0.90–1.55) NA NA
TM6SF2 rs58542926 0.655423 0.91 (0.61–1.36) NA NA
PDCD1 rs7421861 0.181639 0.82 (0.61–1.10) 0.172542 0.81 (0.61–1.10)
PDCD1 rs10204525 0.024180 1.90 (1.09–3.30) 0.009843 2.13 (1.20–3.80)

By univariate analysis, the SNPs in PNPLA3, TM6SF2 and PDCD1 rs7421861 were
significantly different in NAFLD-HCC versus controls, but none retained significance after
regression analysis including age, sex and cirrhosis. The PDCD1 rs10204525 C > T variant
again acquired significance in the regression analysis, including after conditioning on
PNPLA3 and TM6SF2.

3.5. Exploration of Functional Roles for PDCD1 rs7421861 and PDCD1 rs10204525

We have evaluated global effects of these genetic variants on PD-1 expression by
mining publicly available tissues data in the Ensembl Genome (https://www.ensembl.org/
index.html (accessed on 10 March 2021)). We used multi-tissue expression quantitative trait
locus (eQTL) mapping as a means of exploring whether the SNPs associate with altered
gene expression in a given tissue [46–49]. The potential impact of the SNPs on transcript
splicing was also evaluated by mining data from the GTEx portal (https://www.gtexportal.
org/home/ (accessed on 10 March 2021) version 8), another publicly available resource.
Splicing quantitative trait loci (sQTLs) are assigned for SNPs that are associated with altered
or alternative splicing (AS), identified by Leafcutter [50] in the GTEx consortium project.

3.5.1. Elevated PD-1 Expression in the Presence of the PDCD1 rs7421861 “A” Major Allele

In Ensembl, there were 2765 data entries showing gene expression correlations with
this PDCD1 rs7421861, in a variety of tissues. We have assessed the effect of the variant
“G” allele on the eQTL for PD-1 expression, reported relative to “A” as the reference allele.
Positive values indicate upregulation of the transcript in presence of the minor allele, while
negative values indicate downregulation [51]. There were 357 changes significant at a

https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
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p value < 0.05. Restricting analysis to 84 data entries considering expression in immune
cells, blood or spleen, PD-1 was significantly downregulated in the presence of the minor
allele (Table 7). Expression in the presence of the wild type PDCD1 rs7421861 “A” allele,
the one we have identified as associated with cancer risk, was therefore higher, with the
minor allele associated with significant suppression. Note that besides PD-1 expression,
PDCD1 rs7421861 was associated with altered expression of 5 other genes in locus vicinity
(restricting analysis to effect size of ≥0.5 or ≤−0.5, Supplementary Table S14).

Table 7. The eQTL effect size and significance for PDCD1 rs7421861 and PD-1 expression in indicated
cell types, with the variant significantly associated with suppressed PD-1 expression.

rs7421861

p-Value (-log10) Effect Size Tissue/Cell Type

2.028825 −0.06357 Whole_Blood
2.737219 −0.10859 blood
1.413284 −0.21721 macrophage_naive
1.481194 −0.22847 monocyte_IAV
2.160692 −0.38254 monocyte_Pam3CSK4
2.072197 −0.39053 monocyte_LPS
2.878066 −0.45225 macrophage_Listeria
4.672717 −0.52111 monocyte_R848

3.5.2. Elevated PD-1 Expression in the Presence of the PDCD1 rs10204525 Minor Allele

Similar to PDCD1 rs7421861, there were 2652 gene expression data entries enabling the
study of correlations with the PDCD1 rs10204525 variant. Again, restricting the analysis to
those focused on expression in immune cells, blood or spleen, with an effect size of ≥0.5 or
≤−0.5; p < 0.05, there were 66 data entries. The SNP reportedly acts as a potential cis-eQTL
for 11 genes within the locus (Supplementary Table S15). Overall, gene expression was
upregulated in the presence of the minor allele PDCD1 rs10204525 “T” allele, the one we
have identified as associated with NAFLD-HCC risk, most notably in activated T cells and
monocytes (Table 8).

Table 8. The eQTL effect size and significance for PDCD1 rs10204525 and PD-1 expression in indicated
cell types, with the variant significantly associated with increased PD-1 expression.

rs10204525

p-Value (-log10) Effect Size Tissue/Cell Type

8.853481 0.964331 monocyte_Pam3CSK4
8.408515 0.96187 monocyte_LPS
9.49804 0.944919 monocyte_naive
2.34563 0.916861 monocyte_CD16_naive
5.266115 0.738328 CD4_T-cell_anti-CD3-CD28
7.349027 0.735695 monocyte_R848
4.761555 0.591227 CD8_T-cell_anti-CD3-CD28
6.339877 0.581108 monocyte_IAV
1.772399 −0.08286 Whole_Blood
5.520671 −0.25549 blood

3.5.3. sQTLs Associated with PDCD1 rs7421861 and PDCD1 rs10204525

In the GTEx portal, PDCD1 rs7421861 and rs10204525 were also identified as hav-
ing a significant association with altered splicing, measured by the sQTL in different
tissues. In particular, PDCD1 rs7421861 was significantly associated with an altered in-
tron excision ratio for long non-coding RNA LINC01238 in splenic tissue (NES = −0.78,
p value = 3.3 × 10−7), while PDCD1 rs10204525 was significantly associated with an al-
tered intron excision ratio for LINC01237 in whole blood (NES = 0.47, p value = 1.1 × 10−7)
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(Figure 2). Using the LINCs as candidate biomarkers of altered splicing in the region of the
PDCD1 locus, the data point towards the SNPs altering splicing factor binding sites.
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4. Discussion

As yet, there has been no GWAS study defining the genetic determinants of HCC
arising in NAFLD, in either the presence or absence of cirrhosis. Of the NAFLD-HCC-
associated candidate genes studied, the most robustly validated thus far have been those
identified in GWAS studies looking for genes associated with NAFLD development. It is not
a surprise, therefore, that these are variants in genes—like PNPLA3 and TM6SF2—where
the minor alleles alter protein function and promote steatosis, associated with both qual-
itative and quantitative alterations in hepatic fat content [52]. Although their impact on
HCC predisposition is directly correlated with the promotion of NAFLD [18], these causal
variants involved in fatty liver disease predisposition may also have pleiotropic effects,
whereby they directly promote hepatic carcinogenesis by activating specific pathways.
However, GWAS designed to identify genes elevating the risk of NAFLD would not neces-
sarily capture those specifically promoting NAFLD-HCC. The candidate immunoregulatory
genes studied here were purposefully selected.

A GWAS considering HCC risk in HCV previously identified a candidate immunoreg-
ulatory SNP in Major Histocompatibility Complex class I polypeptide related sequence
A (MICA) [19]. MICA is a stress-induced cell surface antigen presenting peptide that
binds and activates the NKG2D stimulatory receptor on the surface of NK cells and T
cells, mediating their cytolytic immune surveillance. It has been reported that MICA
rs2596542 C > T alters the expression of MICA, decreasing its membrane-bound form and
increasing its soluble concentrations [53], favouring HCV progression to HCC in a Japanese
population [19]. In our European NAFLD patients studied here, there was no significant
difference between NAFLD control and NAFLD-HCC patients. This possibly supports
MICA variation influencing the immune response and progression to fibrosis in HCV, as
recently reported, rather than hepatocarcinogenesis [54].

Cluster of differentiation 44 (CD44) is a multifunctional transmembrane receptor
expressed on various cell types, with ligand binding activating intracellular signalling
pathways to stimulate cytokine release and lymphocyte activation [20]. The CD44rs187115
T > C SNP is located within intron 1, with the C allele reportedly associated with a higher
risk of HBV-HCC development in Taiwan and China [21,55]. The mechanisms are yet to be
determined, but a role in the p53 stress response has been proposed [22]. Our own interest
in CD44 arose having identified its expression in hepatic macrophages, in association with
NC SH-HCC in murine models of NAFLD-HCC [56]. Although there was no significant
differences in allele frequencies between NAFLD controls and NAFLD-HCC cases, the C
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allele was noted to be significantly more common in SH-HCC arising in NC NAFLD. This
was interesting, but the numbers of cases studied are presently small.

PDCD1 encodes PD-1, a co-inhibitory receptor expressed most notably on activated T
cells, with binding to the widely expressed ligands PD-L1 and PD-L2 suppressing activity
and limiting potential damage to the host [24]. T cell receptor (TCR) activation stimulates
the expression of nuclear factor of activated T cells (NFAT), a transcription factor that
promotes IL-2-mediated T cell proliferation, but also binds the PDCD1 promoter inducing
expression of PD-1 [23]. Ongoing T cell activation with persistent PD-1 expression is
associated with functional T cell exhaustion, with loss of T cell function and enhanced
apoptosis. Tumour overexpression of PD-L1 is recognised as a means of supporting
an immunosuppressive tolerant microenvironment and tumour immune evasion [57].
Sustained PD-1 expression, its decreased degradation, or expression of PD-L1 may also
reportedly elevate individuals susceptible to HCC development [24,25,58,59].

A number of SNPs have been identified that may alter the expression and function of
PD-1, with reports linking these to autoimmune disease [59], but also immunosuppressive
conditions. PDCD1 rs10204525 C > T is located at the 3′UTR, increasing PD-1 expres-
sion and reportedly promoting dysfunctional T cell responses and persistence in HBV
infection [26–31,33,60]. The promotion of an immunosuppressive phenotype by PDCD1
rs10204525 C > T may also contribute to tumour development but has not as yet been
characterised. Our in silico analysis an influence of PDCD1 rs10204525 on PD-1 expression,
being higher in the presence of the PDCD1 rs10204525 “T” allele, with evidence in addi-
tion for a regulatory role in splicing. In our study, after adjusting for other cancer risks
including gender, the variant “T” allele was significantly associated with NAFLD-HCC
risk, regardless of the presence or absence of cirrhosis. As the T allele has low prevalence
in European populations (~10%), the significance became much more noticeable in our
cases after adjusting for gender—as over 35% of women with NAFLD-HCC carried the
variant. Notably, the T allele is in fact the major allele in Asian populations, being present
in 60–70% of people (NCBI dbSNP).

The rs7421861 A > G, the second PDCD1candidate SNP studied, is located in intron
1, where there are numerous known splicing and regulatory elements [24]. Although the
function of this SNP has not been characterised, our in silico analysis indicates higher PD-1
expression in association with the PDCD1rs7421861 A allele and also supports aberrant
PD-1 splicing as a means by which the G allele protects against cancers. An alteration in
the prevalence of PD-1 transcripts, with the G allele suppressing PD-1 mediated immune
exhaustion and protecting against the development of cancers—including viral hepatitis
HCC—has been previously suggested [24,30–33]. The data from the Newcastle cohort were
in keeping with this, with the wild type “A” allele being significantly more common in
NAFLD patients with cancers. This was not so apparent in the smaller cohorts from Berne
and Milan, with fewer non-cirrhotic cases and fewer women.

Possibly the most important take home message from this paper, is that while the
genetic variations in the genes influencing the environment in which HCC develops may
differ in populations, there are likely to be pathways that are shared. Although we did not
confirm these specific PDCD1 SNP associations independently in the smaller replication
cohorts from Berne and Milan, our study was limited to two SNPs and does not rule out
a key role for dysregulation of PD-1 in these or other populations, at different levels as
yet undefined. While the NAFLD predisposing genes promoting progression of fatty liver
disease have been demonstrated to play a key role in NAFLD-HCC development, mainly
mediated through the induction of steatohepatitis and fibrogenesis, genes regulating
immunoregulatory pathways may have a role at least equally important—more so in
those cases without significant fibrosis. This study highlights a potential role for PD-1 in
susceptibility to HCC in NAFLD which is worthy of further study—especially as PD-1 is a
druggable target. Furthermore, for patients with NAFLD-HCC, histological subtyping may
carry information that will be important to define as we enter an era of immuno-oncology
therapies. Going forward, particularly as emerging data suggest that those with NAFLD-
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HCC may be less likely to respond to agents inhibiting PD-1/PD-L1 [61], understanding
the immune environment is essential, as is identifying clinically useful tissues and blood-
based biomarkers. Immunoregulatory SNPs have in the past directed liver disease-related
therapies [62]. Those SNPs characterised here, or others, may yet have roles in stratifying
surveillance or therapies for NAFLD-HCC. Their major contribution, however, may well
be their highlighting key immunoregulatory mechanisms for further study.

5. Conclusions

We report that the genetic predisposition to HCC development in NAFLD may be
influenced by immunoregulatory genes—most notably in this study, PDCD1—in addition
to genes predisposing to increased fat accumulation and progression to advanced fibrosis
and cirrhosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1412/s1, Table S1: Applied Biosciences Taqman Assays, Table S2: Calculations to estimate
the power of our cohorts to evaluate the genetic variation on HCC risk in NAFLD, Table S3: Changes
in association with TNM Stage, Table S4: Demographic characteristics of Newcastle cirrhotic and
NC NAFLD-HCC cohort, Table S5: Features associated with survival in NAFLD-HCC patients
(Newcastle), Table S6: Genotype frequencies of the candidate SNPs in Newcastle NAFLD and
NAFLD-HCC, Table S7: Dominant, recessive and genotype associations with HCC risk assessed by
logistic regression in the Newcastle cohort, Table S8: Minor Allele Frequency (MAF) for the candidate
genes in the Newcastle NAFLD GWAS study, reporting any difference (p value) compared to NAFLD
GWAS controls (without NAFLD), Table S9: Prevalence of PDCD1 rs10204525 SNP in Newcastle
NAFLD versus NAFLD-HCC patients—gender comparison, Table S10: Linkage disequilibrium
analysis for PDCD1 rs7421861 A > G and rs10204525 C > T, Table S11: Allelic analyses restricted to
353 NAFLD controls and 78 NAFLD-HCC cases without cirrhosis, Table S12: Genotype frequencies
of the candidate SNPs in Berne and Milan NAFLD and NAFLD-HCC cohorts, Table S13: Statistical
analysis of the candidate SNPs in Berne and Milan NAFLD and NAFLD-HCC cohorts, Table S14:
Table shows the eQTL effect size and significance for PDCD1 rs7421861 and indicated gene expression
in specific tissues or cell types, Table S15: Table shows the eQTL effect size and significance for PDCD1
rs10204525 and indicated gene expression in specific tissues or cell types.

Author Contributions: Conceptualisation, M.Y.W.Z., A.K.D., J.-F.D., L.V., Q.M.A. and H.L.R.; Data
curation, N.E., R.D., R.S., R.W., A.D.B., B.H., L.V. and H.L.R.; Formal analysis, R.D., H.J.C. and
H.L.R.; Funding acquisition, J.-F.D., L.V., Quentin M Anstee and H.L.R.; Investigation, N.E., R.D.,
R.S., M.V.M., N.M., J.P.M., A.D.B., B.H., C.B., J.-F.D., L.V. and H.L.R.; Methodology, R.D., R.S., M.V.M.,
R.W., M.Y.W.Z., A.K.D., J.P.M., A.D.B., B.H., H.J.C., C.B., L.V. and H.L.R.; Project administration,
M.V.M., R.W., Y.L.L. and H.L.R.; Resources, A.K.D., J.-F.D., L.V., Q.M.A. and H.L.R.; Software, N.E.,
R.S., M.Y.W.Z. and H.L.R.; Supervision, R.S., M.V.M., Y.L.L., M.F., M.A.F., M.Y.W.Z., A.K.D., J.P.M.,
H.J.C., L.V., Q.M.A. and H.L.R.; Validation, R.D., L.V. and H.L.R.; Visualisation, N.E., R.D., N.M.,
M.Y.W.Z., L.V. and H.L.R.; Writing—original draft, N.E., N.M. and H.L.R.; Writing—review & editing,
N.E., R.D., R.S., M.V.M., R.W., Y.L.L., N.M., M.F., M.A.F., M.Y.W.Z., A.K.D., H.J.C., C.B., J.-F.D., L.V.,
Q.M.A. and H.L.R. All authors have read and agreed to the published version of the manuscript.

Funding: Patient recruitment in Newcastle was supported by the European Community’s Seventh
Framework Programme (FP7/2010-2013) under grant agreement HEALTH-F2-2009-241762 for the
project FLIP, the CR UK Newcastle Experimental Cancer Medicine Center award (C9380/A18084)
and CR UK programme grant C18342/A23390, as well as the European Community’s Horizon 2020
Programme (EPoS Grant Agreement 634413), IMI2 (LITMUS Grant Agreement 777377) and the
European NAFLD Registry. HLR, MMC, RW and QMA were supported by the CR UK HUNTER
Accelerator (C9380/A26813). RS is supported by Newcastle University Research Fellowship. LV
was also supported by Ricerca Finalizzata Ministero della Salute RF-2016-02364358, Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon
2020 (under grant agreement No. 777377) for the project LITMUS, and Programme “Photonics”
under grant agreement “101016726” for the project REVEAL; Fondazione IRCCS Ca’ Granda “Ricerca
corrente”, Fondazione Sviluppo Ca’ Granda (PR-0391, RC100017A).

https://www.mdpi.com/2072-6694/13/6/1412/s1
https://www.mdpi.com/2072-6694/13/6/1412/s1


Cancers 2021, 13, 1412 15 of 17

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Newcastle and North Tyneside Regional ethics
committee (REC), the Newcastle Academic Health Partners Bioresource (NAHPB) and the Newcastle
upon Tyne NHS Foundation Trust Research and Development (R&D) department (REC References
18/NE/0182; 10/H0906/41; 12/NE/0395; 17/NE/0127; Human Tissue Act license 12534).

Informed Consent Statement: All patients’ samples were collected with their informed and docu-
mented consent.

Data Availability Statement: EMBL-EBI. https://www.ebi.ac.uk/gwas/studies/GCST90011885
(accessed on 25 August 2020); https://www.ebi.ac.uk/gwas/studies/GCST010861 (accessed on 25
August 2020) for GWAS information.

Acknowledgments: We thank our research nurses, as well as our patients for agreeing to the use of
their samples and data for research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. European Association for the Study of the Liver. Easl clinical practice guidelines: Management of hepatocellular carcinoma. J.

Hepatol. 2018, 69, 182–236. [CrossRef]
2. Chien, Y.C.; Jan, C.F.; Kuo, H.S.; Chen, C.J. Nationwide hepatitis b vaccination program in taiwan: Effectiveness in the 20 years

after it was launched. Epidemiol. Rev. 2006, 28, 126–135. [CrossRef]
3. Kudo, M.; Izumi, N.; Kubo, S.; Kokudo, N.; Sakamoto, M.; Shiina, S.; Tateishi, R.; Nakashima, O.; Murakami, T.; Matsuyama, Y.;

et al. Report of the 20th nationwide follow-up survey of primary liver cancer in japan. Hepatol. Res. 2019, 50, 15–46. [CrossRef]
4. European Association for the Study of the Liver. Easl 2017 clinical practice guidelines on the management of hepatitis b virus

infection. J. Hepatol. 2017, 67, 370–398. [CrossRef] [PubMed]
5. Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; European Association for the Study of the Liver.

Easl recommendations on treatment of hepatitis c: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [CrossRef] [PubMed]
6. Cancer Research UK. Cancer Mortality Statistics. Available online: https://www.cancerresearchuk.org/health-professional/

cancer-statistics/mortality (accessed on 28 August 2020).
7. Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From nash to hcc: Current concepts and future challenges.

Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [CrossRef] [PubMed]
8. Cheng, Y.J.; Imperatore, G.; Geiss, L.S.; Saydah, S.H.; Albright, A.L.; Ali, M.K.; Gregg, E.W. Trends and disparities in cardiovascular

mortality among US adults with and without self-reported diabetes, 1988–2015. Diabetes Care 2018, 41, 2306–2315. [CrossRef]
[PubMed]

9. Frazer, K.; Callinan, J.E.; McHugh, J.; van Baarsel, S.; Clarke, A.; Doherty, K.; Kelleher, C. Legislative smoking bans for reducing
harms from secondhand smoke exposure, smoking prevalence and tobacco consumption. Cochrane Database Syst. Rev. 2016, 2,
CD005992. [CrossRef]

10. Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of nafld and
nash: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [CrossRef]

11. Geh, D.; Manas, D.M.; Reeves, H.L. Hepatocellular carcinoma in non-alcoholic fatty liver disease—A review of an emerging
challenge facing clinicians. Hepatobiliary Surg. Nutr. 2021, 10, 59–75. [CrossRef] [PubMed]

12. Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection.
Hepatology 2010, 51, 1820–1832. [CrossRef]

13. Liu, Y.L.; Patman, G.L.; Leathart, J.B.; Piguet, A.C.; Burt, A.D.; Dufour, J.F.; Day, C.P.; Daly, A.K.; Reeves, H.L.; Anstee, Q.M.
Carriage of the pnpla3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated
hepatocellular carcinoma. J. Hepatol. 2014, 61, 75–81. [CrossRef]

14. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of nafld to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev.
Gastroenterol. Hepatol. 2013, 10, 330–344. [CrossRef]

15. Liu, Y.-L.; Reeves, H.L.; Burt, A.D.; Tiniakos, D.; McPherson, S.; Leathart, J.B.S.; Allison, M.E.D.; Alexander, G.J.; Piguet, A.-C.;
Anty, R.; et al. Tm6sf2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat.
Commun. 2014, 5, 4309. [CrossRef]

16. Tang, S.; Zhang, J.; Mei, T.-T.; Guo, H.-Q.; Wei, X.-H.; Zhang, W.-Y.; Liu, Y.-L.; Liang, S.; Fan, Z.-P.; Ma, L.-X.; et al. Association
of tm6sf2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: A meta-analysis. BMC Cancer 2019, 19, 1128.
[CrossRef]

17. Zhang, X.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. The genetics of clinical liver diseases: Insight into the tm6sf2 e167k variant. J. Clin.
Transl. Hepatol. 2018, 6, 326–331. [CrossRef]

18. Bianco, C.; Jamialahmadi, O.; Pelusi, S.; Baselli, G.; Dongiovanni, P.; Zanoni, I.; Santoro, L.; Maier, S.; Liguori, A.; Meroni, M.; et al.
Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol.
2020. [CrossRef]

https://www.ebi.ac.uk/gwas/studies/GCST90011885
https://www.ebi.ac.uk/gwas/studies/GCST010861
http://doi.org/10.1016/j.jhep.2018.03.019
http://doi.org/10.1093/epirev/mxj010
http://doi.org/10.1111/hepr.13438
http://doi.org/10.1016/j.jhep.2017.03.021
http://www.ncbi.nlm.nih.gov/pubmed/28427875
http://doi.org/10.1016/j.jhep.2020.08.018
http://www.ncbi.nlm.nih.gov/pubmed/32956768
https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality
https://www.cancerresearchuk.org/health-professional/cancer-statistics/mortality
http://doi.org/10.1038/s41575-019-0145-7
http://www.ncbi.nlm.nih.gov/pubmed/31028350
http://doi.org/10.2337/dc18-0831
http://www.ncbi.nlm.nih.gov/pubmed/30131397
http://doi.org/10.1002/14651858.CD005992.pub3
http://doi.org/10.1038/nrgastro.2017.109
http://doi.org/10.21037/hbsn.2019.08.08
http://www.ncbi.nlm.nih.gov/pubmed/33575290
http://doi.org/10.1002/hep.23594
http://doi.org/10.1016/j.jhep.2014.02.030
http://doi.org/10.1038/nrgastro.2013.41
http://doi.org/10.1038/ncomms5309
http://doi.org/10.1186/s12885-019-6173-4
http://doi.org/10.14218/JCTH.2018.00022
http://doi.org/10.1016/S0168-8278(20)30587-0


Cancers 2021, 13, 1412 16 of 17

19. Kumar, V.; Kato, N.; Urabe, Y.; Takahashi, A.; Muroyama, R.; Hosono, N.; Otsuka, M.; Tateishi, R.; Omata, M.; Nakagawa, H.; et al.
Genome-wide association study identifies a susceptibility locus for hcv-induced hepatocellular carcinoma. Nat. Genet. 2011, 43,
455–458. [CrossRef] [PubMed]

20. Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of cd44 in cancer progression: Therapeutic implications. J.
Hematol. Oncol. 2018, 11, 64. [CrossRef]

21. Chou, Y.-E.; Hsieh, M.-J.; Chiou, H.-L.; Lee, H.-L.; Yang, S.-F.; Chen, T.-Y. Cd44 gene polymorphisms on hepatocellular carcinoma
susceptibility and clinicopathologic features. Biomed. Res. Int. 2014, 2014, 231474. [CrossRef]

22. Endo, K.; Terada, T. Protein expression of cd44 (standard and variant isoforms) in hepatocellular carcinoma: Relationships with
tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J. Hepatol. 2000, 32, 78–84. [CrossRef]

23. Bally, A.P.R.; Austin, J.W.; Boss, J.M. Genetic and epigenetic regulation of pd-1 expression. J. Immunol. 2016, 196, 2431–2437.
[CrossRef]

24. Salmaninejad, A.; Khoramshahi, V.; Azani, A.; Soltaninejad, E.; Aslani, S.; Zamani, M.R.; Zal, M.; Nesaei, A.; Hosseini, S.M. Pd-1
and cancer: Molecular mechanisms and polymorphisms. Immunogenetics 2018, 70, 73–86. [CrossRef] [PubMed]

25. Tan, K.W.; Chacko, A.-M.; Chew, V. PD-1 expression and its significance in tumour microenvironment of hepatocellular carcinoma.
Transl. Gastroenterol. Hepatol. 2019, 4, 51. [CrossRef]

26. Ghorbani, P.; Mollaei, H.; Arabzedeh, S.; Zahedi, M. Upregulation of single nucleotide polymorphism of PD-1 gene (rs10204525)
in chronic hepatitis B patients. Int. Arch. Med. Microbiol. 2019, 2. [CrossRef]

27. Chihab, H.; Jadid, F.Z.; Foka, P.; Zaidane, I.; El Fihry, R.; Georgopoulou, U.; Marchio, A.; Elhabazi, A.; Chair, M.; Pineau, P.; et al.
Programmed cell death-1 3’-untranslated region polymorphism is associated with spontaneous clearance of hepatitis B virus
infection. J. Med. Virol. 2018, 90, 1730–1738. [CrossRef] [PubMed]

28. Huang, C.; Ge, T.; Xia, C.; Zhu, W.; Xu, L.; Wang, Y.; Wu, F.; Liu, F.; Zheng, M.; Chen, Z. Association of rs10204525 genotype
gg and rs2227982 CC combination in programmed cell death 1 with hepatitis B virus infection risk. Medicine 2019, 98, e16972.
[CrossRef]

29. Zhang, G.; Li, N.; Zhang, P.; Li, F.; Yang, C.; Zhu, Q.; Han, Q.; Lv, Y.; Zhou, Z.; Liu, Z. PD-1 mrna expression is associated with
clinical and viral profile and PD1 3’-untranslated region polymorphism in patients with chronic hbv infection. Immunol. Lett.
2014, 162, 212–216. [CrossRef]

30. Zang, B.; Chen, C.; Zhao, J.-Q. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical
features of esophageal cancer in a chinese han population. Aging 2020, 12, 3771–3790. [CrossRef]

31. Dong, W.; Gong, M.; Shi, Z.; Xiao, J.; Zhang, J.; Peng, J. Programmed cell death-1 polymorphisms decrease the cancer risk: A
meta-analysis involving twelve case-control studies. PLoS ONE 2016, 11, e0152448. [CrossRef]

32. Huang, K.; Hu, E.; Li, W.; Lv, J.; He, Y.; Deng, G.; Xiao, J.; Yang, C.; Zhao, X.; Chen, L.; et al. Association of PD-1 polymorphisms
with the risk and prognosis of lung adenocarcinoma in the northeastern chinese han population. BMC Med. Genet. 2019, 20, 177.
[CrossRef]

33. Hashemi, M.; Karami, S.; Sarabandi, S.; Moazeni-Roodi, A.; Małecki, A.; Ghavami, S.; Wiechec, E. Association between PD-1 and
PD-l1 polymorphisms and the risk of cancer: A meta-analysis of case-control studies. Cancers 2019, 11, 1150. [CrossRef] [PubMed]

34. Hardy, T.; Wonders, K.; Younes, R.; Aithal, G.P.; Aller, R.; Allison, M.; Bedossa, P.; Betsou, F.; Boursier, J.; Brosnan, M.J.; et al. The
european nafld registry: A real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp. Clin. Trials 2020, 98,
106175. [CrossRef]

35. Anstee, Q.M.; Darlay, R.; Cockell, S.; Meroni, M.; Govaere, O.; Tiniakos, D.; Burt, A.D.; Bedossa, P.; Palmer, J.; Liu, Y.L.; et al.
Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol.
2020, 73, 505–515. [CrossRef] [PubMed]

36. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al.
Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575.
[CrossRef]

37. Liu, J.Z.; Tozzi, F.; Waterworth, D.M.; Pillai, S.G.; Muglia, P.; Middleton, L.; Berrettini, W.; Knouff, C.W.; Yuan, X.; Waeber, G.; et al.
Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010, 42, 436–440. [CrossRef]

38. Dudbridge, F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data.
Hum. Hered. 2008, 66, 87–98. [CrossRef]

39. Duan, X.Y.; Zhang, L.; Fan, J.G.; Qiao, L. Nafld leads to liver cancer: Do we have sufficient evidence? Cancer Lett. 2014, 345,
230–234. [CrossRef]

40. Sanyal, A.J.; Harrison, S.A.; Ratziu, V.; Abdelmalek, M.F.; Diehl, A.M.; Caldwell, S.; Shiffman, M.L.; Aguilar Schall, R.; Jia, C.;
McColgan, B.; et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: Data from the simtuzumab trials.
Hepatology 2019, 70, 1913–1927. [CrossRef]

41. Harrison, S.A.; Wong, V.W.; Okanoue, T.; Bzowej, N.; Vuppalanchi, R.; Younes, Z.; Kohli, A.; Sarin, S.; Caldwell, S.H.; Alkhouri, N.;
et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to nash: Results from randomized phase iii
stellar trials. J. Hepatol. 2020, 73, 26–39. [CrossRef]

42. Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M.; et al.
Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 2014, 60, 110–117. [CrossRef]
[PubMed]

http://doi.org/10.1038/ng.809
http://www.ncbi.nlm.nih.gov/pubmed/21499248
http://doi.org/10.1186/s13045-018-0605-5
http://doi.org/10.1155/2014/231474
http://doi.org/10.1016/S0168-8278(00)80192-0
http://doi.org/10.4049/jimmunol.1502643
http://doi.org/10.1007/s00251-017-1015-5
http://www.ncbi.nlm.nih.gov/pubmed/28642997
http://doi.org/10.21037/tgh.2019.06.08
http://doi.org/10.23937/2643-4008/1710009
http://doi.org/10.1002/jmv.25265
http://www.ncbi.nlm.nih.gov/pubmed/30016557
http://doi.org/10.1097/MD.0000000000016972
http://doi.org/10.1016/j.imlet.2014.09.001
http://doi.org/10.18632/aging.102845
http://doi.org/10.1371/journal.pone.0152448
http://doi.org/10.1186/s12881-019-0914-8
http://doi.org/10.3390/cancers11081150
http://www.ncbi.nlm.nih.gov/pubmed/31405171
http://doi.org/10.1016/j.cct.2020.106175
http://doi.org/10.1016/j.jhep.2020.04.003
http://www.ncbi.nlm.nih.gov/pubmed/32298765
http://doi.org/10.1086/519795
http://doi.org/10.1038/ng.572
http://doi.org/10.1159/000119108
http://doi.org/10.1016/j.canlet.2013.07.033
http://doi.org/10.1002/hep.30664
http://doi.org/10.1016/j.jhep.2020.02.027
http://doi.org/10.1016/j.jhep.2013.08.011
http://www.ncbi.nlm.nih.gov/pubmed/23978719


Cancers 2021, 13, 1412 17 of 17

43. Pelusi, S.; Baselli, G.; Pietrelli, A.; Dongiovanni, P.; Donati, B.; McCain, M.V.; Meroni, M.; Fracanzani, A.L.; Romagnoli, R.; Petta, S.;
et al. Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci. Rep. 2019, 9, 3682.
[CrossRef] [PubMed]

44. Board WCoTE. Tumour of the liver and intrahepatic bile ducts. In Digestive System Tumours, 5th ed.; International Agency for
Research on Cancer: Lyon, France, 2019; pp. 215–263.

45. Falleti, E.; Cussigh, A.; Cmet, S.; Fabris, C.; Toniutto, P. Pnpla3 rs738409 and tm6sf2 rs58542926 variants increase the risk of
hepatocellular carcinoma in alcoholic cirrhosis. Dig. Liver Dis. 2016, 48, 69–75. [CrossRef]

46. Schadt, E.E.; Monks, S.A.; Friend, S.H. A new paradigm for drug discovery: Integrating clinical, genetic, genomic and molecular
phenotype data to identify drug targets. Biochem. Soc. Trans. 2003, 31, 437–443. [CrossRef]

47. Lappalainen, T.; Sammeth, M.; Friedlander, M.R.; Ac’t Hoen, P.A.; Monlong, J.; Rivas, M.A.; Gonzalez-Porta, M.; Kurbatova, N.;
Griebel, T.; Ferreira, P.G.; et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501,
506–511. [CrossRef] [PubMed]

48. Carithers, L.J.; Moore, H.M. The genotype-tissue expression (gtex) project. Biopreserv. Biobank. 2015, 13, 307–308. [CrossRef]
49. Bahcall, O.G. Human genetics: Gtex pilot quantifies eqtl variation across tissues and individuals. Nat. Rev. Genet. 2015, 16, 375.

[CrossRef]
50. Li, Y.I.; Knowles, D.A.; Humphrey, J.; Barbeira, A.N.; Dickinson, S.P.; Im, H.K.; Pritchard, J.K. Annotation-free quantification of

rna splicing using leafcutter. Nat. Genet. 2018, 50, 151–158. [CrossRef]
51. Mohammadi, P.; Castel, S.E.; Brown, A.A.; Lappalainen, T. Quantifying the regulatory effect size of cis-acting genetic variation

using allelic fold change. Genome. Res. 2017, 27, 1872–1884. [CrossRef]
52. Romeo, S.; Sanyal, A.; Valenti, L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell

Metab. 2020, 31, 35–45. [CrossRef]
53. Mohamed, A.A.; Elsaid, O.M.; Amer, E.A.; Elosaily, H.H.; Sleem, M.I.; Gerges, S.S.; Saleh, M.A.; El Shimy, A.; El Abd, Y.S. Clinical

significance of snp (rs2596542) in histocompatibility complex class i-related gene a promoter region among hepatitis c virus
related hepatocellular carcinoma cases. J. Adv. Res. 2017, 8, 343–349. [CrossRef]

54. Sharkawy, R.E.; Bayoumi, A.; Metwally, M.; Mangia, A.; Berg, T.; Romero-Gomez, M.; Abate, M.L.; Irving, W.L.; Sheridan, D.;
Dore, G.J.; et al. A variant in the mica gene is associated with liver fibrosis progression in chronic hepatitis c through tgf-beta1
dependent mechanisms. Sci. Rep. 2019, 9, 1439. [CrossRef] [PubMed]

55. Pan, X.; Li, M.; Huang, L.; Mo, D.; Liang, Y.; Huang, Z.; Zhu, B.; Fang, M. Cd44, il-33, and st2 gene polymorphisms on
hepatocellular carcinoma susceptibility in the chinese population. Biomed. Res. Int. 2020, 2020, 2918517. [CrossRef] [PubMed]

56. Zaki, M.Y.W.; McCain, M.; Mhadi, A.K.; Mauricio, J.; Wilson, C.; Patman, G.L.; Whitehead, A.; Lunec, J.; Shukla, R.; Anstee, Q.M.;
et al. OP-01: Genome Wide RNA Expression Analysis Identifies cd44 Positive Macrophages as Promoters of Hepatocyte
Proliferation and the Development of Nafld-HCC. In Proceedings of the EASL HCC Summit, Portugal, Lisbon, 14–16 February 2019;
Abstract Book; EASL: Portugal, Lisbon, 2019; p. 29.

57. Gao, Q.; Wang, X.-Y.; Qiu, S.-J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.-Z.; Shi, Y.-H.; Xiao, Y.-S.; et al. Overexpression of
pd-l1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin.
Cancer Res. 2009, 15, 971. [CrossRef] [PubMed]

58. Staron, M.M.; Gray, S.M.; Marshall, H.D.; Parish, I.A.; Chen, J.H.; Perry, C.J.; Cui, G.; Li, M.O.; Kaech, S.M. The transcription
factor foxo1 sustains expression of the inhibitory receptor pd-1 and survival of antiviral CD8(+) t cells during chronic infection.
Immunity 2014, 41, 802–814. [CrossRef]

59. Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 2016, 375, 1767–1778.
[CrossRef]

60. Li, Z.; Li, N.; Zhu, Q.; Zhang, G.; Han, Q.; Zhang, P.; Xun, M.; Wang, Y.; Zeng, X.; Yang, C.; et al. Genetic variations of PD1
and tim3 are differentially and interactively associated with the development of cirrhosis and hcc in patients with chronic hbv
infection. Infect. Genet. Evol. 2013, 14, 240–246. [CrossRef]

61. Pinter, M.; Scheiner, B.; Peck-Radosavljevic, M. Immunotherapy for advanced hepatocellular carcinoma: A focus on special
subgroups. Gut 2021, 70, 204–214. [CrossRef]

62. Suppiah, V.; Moldovan, M.; Ahlenstiel, G.; Berg, T.; Weltman, M.; Abate, M.L.; Bassendine, M.; Spengler, U.; Dore, G.J.; Powell, E.;
et al. Il28b is associated with response to chronic hepatitis c interferon-alpha and ribavirin therapy. Nat. Genet. 2009, 41, 1100–1104.
[CrossRef] [PubMed]

http://doi.org/10.1038/s41598-019-39998-2
http://www.ncbi.nlm.nih.gov/pubmed/30842500
http://doi.org/10.1016/j.dld.2015.09.009
http://doi.org/10.1042/bst0310437
http://doi.org/10.1038/nature12531
http://www.ncbi.nlm.nih.gov/pubmed/24037378
http://doi.org/10.1089/bio.2015.29031.hmm
http://doi.org/10.1038/nrg3969
http://doi.org/10.1038/s41588-017-0004-9
http://doi.org/10.1101/gr.216747.116
http://doi.org/10.1016/j.cmet.2019.12.002
http://doi.org/10.1016/j.jare.2017.03.004
http://doi.org/10.1038/s41598-018-35736-2
http://www.ncbi.nlm.nih.gov/pubmed/30723271
http://doi.org/10.1155/2020/2918517
http://www.ncbi.nlm.nih.gov/pubmed/33062675
http://doi.org/10.1158/1078-0432.CCR-08-1608
http://www.ncbi.nlm.nih.gov/pubmed/19188168
http://doi.org/10.1016/j.immuni.2014.10.013
http://doi.org/10.1056/NEJMra1514296
http://doi.org/10.1016/j.meegid.2012.12.008
http://doi.org/10.1136/gutjnl-2020-321702
http://doi.org/10.1038/ng.447
http://www.ncbi.nlm.nih.gov/pubmed/19749758

	1
	Introduction 
	Materials and Methods 
	Patients 
	Genotyping Strategy 
	Statistical Analysis 
	Power Calculation 

	Results 
	The Newcastle Patient Cohorts Clinical Information 
	The NAFLD Control and NAFLD-HCC Patient Characteristics 
	The Newcastle NAFLD-HCC Cohort, Comparing Those with and without Cirrhosis 

	The Newcastle Patients’ Cohort Genotype Data 
	PNPLA3 rs738409 C > G and TM6SF2 rs58542926 C > T Genotyping Data 
	The Newcastle Patients’ Cohort Genotype Data—Immunoregulatory Genes 
	.93[1.0]The Newcastle Cohort-Multivariate Analyses Exploring Associations with NAFLD-HCC 
	The Newcastle Cohort—Genotype Associations within the Cirrhotic Versus Non-Cirrhotic NAFLD-HCC Cases 

	Berne and Milan NAFLD and NAFLD-HCC Cohorts 
	Newcastle, Berne and Milan NAFLD and NAFLD-HCC Cohorts Combined 
	Exploration of Functional Roles for PDCD1 rs7421861 and PDCD1 rs10204525 
	Elevated PD-1 Expression in the Presence of the PDCD1 rs7421861 “A” Major Allele 
	Elevated PD-1 Expression in the Presence of the PDCD1 rs10204525 Minor Allele 
	sQTLs Associated with PDCD1 rs7421861 and PDCD1 rs10204525 


	Discussion 
	References

