185 research outputs found

    Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses

    Get PDF
    Population-based febrile respiratory illness surveillance conducted by the Department of Defense contributes to an estimate of vaccine effectiveness. Between January and March 2011, 64 cases of 2009 A/H1N1 (pH1N1), including one fatality, were confirmed in immunized recruits at Fort Jackson, South Carolina, suggesting insufficient efficacy for the pH1N1 component of the live attenuated influenza vaccine (LAIV).To test serologic protection, serum samples were collected at least 30 days post-vaccination from recruits at Fort Jackson (LAIV), Parris Island (LAIV and trivalent inactivated vaccine [TIV]) at Cape May, New Jersey (TIV) and responses measured against pre-vaccination sera. A subset of 78 LAIV and 64 TIV sera pairs from recruits who reported neither influenza vaccination in the prior year nor fever during training were tested by microneutralization (MN) and hemagglutination inhibition (HI) assays. MN results demonstrated that seroconversion in paired sera was greater in those who received TIV versus LAIV (74% and 37%). Additionally, the fold change associated with TIV vaccination was significantly different between circulating (2011) versus the vaccine strain (2009) of pH1N1 viruses (ANOVA p value = 0.0006). HI analyses revealed similar trends. Surface plasmon resonance (SPR) analysis revealed that the quantity, IgG/IgM ratios, and affinity of anti-HA antibodies were significantly greater in TIV vaccinees. Finally, sequence analysis of the HA1 gene in concurrent circulating 2011 pH1N1 isolates from Fort Jackson exhibited modest amino acid divergence from the vaccine strain.Among military recruits in 2011, serum antibody response differed by vaccine type (LAIV vs. TIV) and pH1N1 virus year (2009 vs. 2011). We hypothesize that antigen drift in circulating pH1N1 viruses contributed to reduce vaccine effectiveness at Fort Jackson. Our findings have wider implications regarding vaccine protection from circulating pH1N1 viruses in 2011-2012

    Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential

    Get PDF
    Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN266200700010C))National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C))National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN272201400006C)

    Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data.

    Get PDF
    Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses.We thank all ornithologists and other collaborators for their continuous support. We thank V. Munster, E. Skepner, O. Vuong, C. Baas, J. Guldemeester, M. Schutten, G. van der Water, D. Smith and E. Bortz for technical support and stimulating discussions. This manuscript was prepared while D.E. Wentworth was employed at the JCVI. The opinions expressed in this article are the author’s own and do not reflect the view of the Centers for Disease Control, the Department of Health and Human Services, or the United States government. This work was supported by NIAID/NIH contract HHSN266200700010C, HHSN272201400008C, HHSN272201400006C and HHSN272200900007C, a Wellcome Trust Fellowship Strategic Travel Award under contract WT089235MF, a DTRA FRCWMD Broad Agency Announcement under contract HDTRA1-09-14-FRCWMD GRANT11177182, by the EU Framework six program NewFluBird (044490) by contracts with the Dutch Ministry of Economic Affairs and a NIAID/NIH CEIRS travel grant under contract HHSN266200700010C. The Swedish sampling and analysis was supported by the Swedish Research Councils VR and FORMAS.This is the final version of the article. It first appeared from the Society for General Microbiology via http://dx.doi.org/10.1099/vir.0.00015

    Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem.

    Get PDF
    Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area.IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans

    Outstanding challenges in the transferability of ecological models

    Get PDF
    Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their ‘transferability’) undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions

    Work-Family Life Courses and Metabolic Markers in the MRC National Survey of Health and Development

    Get PDF
    The aim was to investigate whether the combined work-family life courses of British men and women were associated with differences in metabolic markers?waist circumference, blood pressure, high density lipoprotein cholesterol, triglycerides, and glycated haemoglobin?in mid-life. We used data from the Medical Research Council?s National Survey of Health and Development?the 1946 British birth cohort. Multi-channel sequence analysis was used to create a typology of eight work-family life course types combining information on work, partnerships and parenthood between ages 16?51. Linear regression tested associations between work-family types and metabolic outcomes at age 53 on multiply imputed data (20 imputations) of >2,400 participants. Compared with men with strong ties to employment and early transitions to family life, men who made later transitions to parenthood and maintained strong ties to paid work had smaller waist circumferences (-2.16cm, 95% CI: -3.73, -0.59), lower triglycerides (9.78% lower, 95% CI: 0.81, 17.94) and lower blood pressure (systolic: -4.03mmHg, 95% CI: -6.93, -1.13; diastolic: -2.34mmHg, 95% CI: -4.15, -0.53). Married men and women who didn?t have children had increased high density lipoprotein cholesterol (7.23% higher, 95% CI: 0.68, 14.21) and lower waist circumferences (-4.67cm, 95% CI: -8.37, -0.97), respectively. For men later transitions to parenthood combined with strong ties to paid work were linked to reduced metabolic risk in mid-life. Fewer differences between work-family types and metabolic markers were seen for women

    Comparative Genomics of Emerging Human Ehrlichiosis Agents

    Get PDF
    Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens

    Sequencing and analysis of globally obtained human parainfluenza viruses 1 and 3 genomes

    Get PDF
    Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract infections in young children globally. HPIV infections do not confer complete protective immunity so reinfections occur throughout life. Since no effective vaccine is available for the two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epidemic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3 infections. Relatively few whole genome sequences are available for both HPIV-1 and HPIV-3 viruses, so our study sought to provide whole genome sequences from multiple countries to further the understanding of the global diversity of HPIV at a whole-genome level. We collected HPIV-1 and HPIV-3 samples and isolates from Argentina, Australia, France, Mexico, South Africa, Switzerland, and USA from the years 2003–2011 and sequenced the genomes of 40 HPIV-1 and 75 HPIV-3 viruses with Sanger and next-generation sequencing with the Ion Torrent, Illumina, and 454 platforms. Phylogenetic analysis showed that the HPIV-1 genome is evolving at an estimated rate of 4.97 × 10−4 mutations/ site/year (95% highest posterior density 4.55 × 10−4 to 5.38 × 10−4) and the HPIV-3 genome is evolving at a similar rate (3.59 × 10−4 mutations/site/year, 95% highest posterior density 3.26 × 10−4 to 3.94 × 10−4). There were multiple genetically distinct lineages of both HPIV-1 and 3 circulating on a global scale. Further surveillance and whole-genome sequencing are greatly needed to better understand the spatial dynamics of these important respiratory viruses in humans.S1 Text. HPIV-1 Sanger sequencing primers.S2 Text. HPIV-3 Sanger sequencing primers.S1 Table. The sequence information of the 40 HPIV-1 genomes.S2 Table. The sequence information of the 75 HPIV-3 genomes.S3 Table. MEME episodic selection results for HPIV-1 and HPIV-3.The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under contract number HHSN272200900007C and grant numbers U19AI110819, with the sub-project directed by HAL, and grants U01AI070428 and U01AI077988 awarded to KJH.http://www.plosone.orgam2019Medical Virolog

    Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing

    Get PDF
    Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution
    corecore