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Abstract
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic

ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain

enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model

to assess the contribution of wild and domestic hosts to AIV distribution and persistence.

Analysis of globally sampled AIV datasets shows frequent two-way transmission between

wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations

was restricted to within a geographic region. In contrast, spillover from wild to domestic pop-

ulations occurred both within and between regions. Wild birds mediated long-distance dis-

persal at intercontinental scales whereas viral spread among poultry populations was a

major driver of regional spread. Viral spread between poultry flocks frequently originated

from persistent lineages circulating in regions of intensive poultry production. Our analysis

of long-term surveillance data demonstrates that meaningful insights can be inferred from

integrating ecosystem into phylogeographic reconstructions that may be consequential for

pandemic preparedness and livestock protection.

Author Summary

It is assumed that AIV outbreaks in poultry are introduced from wild birds. To test this,
we incorporated ecosystem and location of isolation into a comparative genetic analysis.
We show high rates of viral transmission from domestic to wild birds within a region and,
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that wild birds could transmit AIV to poultry between regions. However, the highest rates
of viral flow between regions was among domestic populations, indicating poultry trade
may play a major role in spreading viral populations. We demonstrate that interactions
between migratory birds and animal productions systems contribute to the emergence of
AIV. The assumption of unidirectional viral flow from wild birds to domestic poultry pro-
vides an incomplete picture of influenza ecology and may confound control efforts.

Introduction
Intensive agriculture has allowed AIV circulating in wild bird populations and multi-host poul-
try systems (domestic food birds including chicken, duck, goose, pigeon) to interact, shaping
the diversity of subtypes with pandemic potential [1]. The recently emerged H7N9 viruses con-
taining H9N2-origin internal genes highlight that co-circulation of subtypes concealed within
poultry systems can enhance the pandemic threat of influenza [2]. Such interactions are not
unique. Over the last decade, H9N2 viruses have donated gene segments to several virus sub-
types infecting poultry and humans, including the highly pathogenic avian influenza (HPAI)
H5N1 panzootic that emerged in 2003 and persists to the present day [3–5]. Transmissions
across the wild-domestic bird interface and genomic reshuffling within poultry have contrib-
uted to the emergence, spread and persistence of novel H5, H6, H7, and H9 AIV genotypes,
which have caused human infection [4, 6, 7]. Despite the importance of viral transmission
between natural and domestic systems, the role of these interactions in determining viral diver-
sity and distribution has not been adequately studied.

AIV transmission between wild reservoirs and domestic animals takes place where natural
and agricultural ecosystems overlap, a scenario that occurs worldwide. For example, transmis-
sion between wild and domestic birds led to H6 outbreaks in Californian poultry [8]; low path-
ogenic (LPAI) H5 viruses from wild birds in Italy were linked to poultry disease in Asia [7, 9];
and wild bird-origin H9 viruses circulating in Korea later emerged in domestic flocks [10].
Most recently, H5 viruses detected in East Asia have spread to European and North American
poultry, consistent with intercontinental migration of wild birds [11]. Although often detected
in domestic birds, viral communication between populations is not one-way. In 2005, HPAI
H5N1 jumped from domestic birds to infect bar-headed geese (Anser indicus) at Qinghai Lake,
China (12). This triggered large-scale wildlife die-offs, contributed to the global spread of
HPAI H5N1 virus and placed considerable burdens on government resources to mitigate
global spread [12, 13].

H9 viruses are endemic in terrestrial poultry in China, the Middle East, and Europe and
occur globally in a diversity of wild bird taxa [14]. Although H9 in poultry is not a notifiable
disease, it is listed by the World Health Organization as a candidate for the next global pan-
demic along with H5 and H7 [15]. Gene segment exchange with H9 has facilitated generation
of novel reassortants, including the 1997 H5N1 strain that caused human infections and fatali-
ties in Hong Kong [3]. Furthermore, periodic human infections with H9 subtype viruses have
led to intensive epidemiological surveillance of wild and domestic birds to identify the infection
source [3, 6, 16, 17]. These events have prompted regular collection and sequencing of H9 sub-
type viruses providing a globally sampled genetic dataset where the contributions of wild and
domestic animals to the global spread can be modelled using phylogeographic approaches.

Despite an expanding AIV host range, the role of ecosystem interactions (i.e. transmission
between wild and domestic animals) in generating and spreading novel influenza viruses over
large distances remain poorly characterized. In this study we integrate the geographical and
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ecological context of transmission into a statistical phylogenetic model. Using H9, H3 and H6
sequence data, including newly acquired sequences from North American wild birds, we char-
acterize the contribution of wild and domestic birds to the global distribution of AIV and esti-
mate the role of inter-ecosystem dynamics on viral diversity and persistence. We hypothesize
that viruses circulating among wild migratory birds may connect a global network of influenza
outbreaks that occur locally in domestic birds. To test this, we incorporated ecosystem and geo-
graphic location of isolation into a comparative genetic analysis of H9 hemagglutinin (HA)
sequence data (see S1 Text and S1 Table). H9 subtype viruses are commonly isolated from
domestic poultry and wild birds [3, 7, 18–24]. Periodic human infections have resulted in
intensive surveillance of domestic birds in order to identify the sources of infection [16, 17]. As
a result, a robust dataset of H9 subtype viruses is available from both domestic and wild birds
throughout the world. Since poultry and wild birds infected with H9 viruses do not often mani-
fest major disease symptoms, vaccination or active control efforts are limited for this subtype.
We utilize the H9 virus surveillance and sequence reporting, enhanced with novel sequences
acquired from North American wild bird surveillance collected between 1974 and 2013. We
build on previous phylogeographic methods [25] to integrate wild and domestic ecosystems in
order to 1) estimate an asymmetric spatial transition matrix; 2) model viral spread among wild
or domestic populations; and 3) assess the relative risk of virus emergence from discrete loca-
tions and ecosystems. We extend our analysis to other avian influenza A virus subtypes (H3
and H6) in order to assess if inferences made from comparative genetic analysis of H9 gene
sequences could be generalized.

Results

Poultry production, live animal trade and disease surveillance
Poultry production density and disease surveillance effort vary considerably between countries.
We therefore incorporated this information in defining our discrete geographic units for our
migration model. Mapping all available poultry and wild bird virus isolates allows for a qualita-
tive assessment showing that global sampling sites correspond well with the intensity and dis-
tribution of poultry production systems, particularly in China and the Middle East (Fig 1A–
1C). Samples from wild and domestic avian hosts spatially overlap. It is possible that surveil-
lance in wild birds was in response to AIV detection in domestic birds. There are few long-
term virological surveillance programs and most detection was based on opportunistic sam-
pling [2,4,6–8,10,11]. As a result, there are many more isolates from domestic birds than wild
birds, despite the importance of these hosts in the ecology, evolution and emergence of AIV
[11]. Sampled sites similarly overlap with areas of intense duck production, although domestic
duck rearing is far less common than chickens worldwide (S1 Fig). While we assume that the
virus behaves the same in all poultry hosts, experimental data indicates this may be a poor
assumption [18]. Unfortunately, limited information on virus prevalence or epidemiology in
various domestic host species between countries makes it difficult to treat individual species
separately, thereby necessitating the grouping used here.

We assume that if AIV is transmitted between domestic populations it is likely correlated
with live poultry trade between countries (Fig 1B). We use this framework to interpret our phy-
logeographic reconstruction results where, we believe that the movement of viruses between
discrete states is limited to the movement of live animals, whether through trade or wild animal
migration. It is possible that transmission between regions could be linked to trade of animal
product or other cryptic means, but for this study we have not considered other mechanisms of
viral spread. According to official trade data available from the Food and Agriculture Organiza-
tion of the United Nations (UN-FAO), intercontinental movement of live poultry primarily
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Fig 1. Poultry production, global trade intensity and location of viral sampling. (A)Map showing global
chicken density (millions of chickens/km2) (B) Reported trade intensity of domestic poultry 1995 to 2011
between regions (C) Locations of available viral sequences within discrete regions defined by sampling effort,
poultry production and sequence data.

doi:10.1371/journal.ppat.1005620.g001
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involves exports from Europe and North America into the eastern hemisphere: Middle East,
China and Southeast Asia (Fig 1B). Regional flow of animals throughout Europe showed that
few countries (i.e. Germany, Netherlands) were the main importers of live animals from other
European nations and were also exporters to the Middle East and Southeast Asia. The majority
of poultry production in China is for domestic consumption, although trade with Southeast
and East Asia (Japan/South Korea) accounted for the bulk of live animal exports (Fig 1B). After
the emergence and spread of HPAI H5N1, there was a marked decline in poultry exports with
the majority of official trade restricted to supplying Hong Kong and Macau. Detailed trade
flow and animal population data led us to subdivide China into 3 distinct regions (East, Central
and West China) based on production and consumption, and to combine Japan and South
Korea into a discrete isolated (particularly after 2004) geo-region relative to China (Fig 1B and
1C). Based on the distribution of available AIV sequences from poultry and global patterns of
live poultry trade, we therefore identified 9 discrete regions for which viral migration patterns
could be estimated (Fig 1C, S2 Fig and S2 Table).

Global distribution of wild bird isolates
Wild bird surveillance is often conducted to identify potential virus sources following out-
breaks in poultry [26]. Consequently, large overlap between wild bird and poultry surveillance
sites exists (Fig 1C and S2 Table). Notable exceptions include long-term influenza surveillance
studies of migratory birds in North America (Delaware Bay, Alberta) and Europe (Ottenby,
Sweden) [27]. With the exception of waterfowl, most other wild bird species are opportunisti-
cally sampled rather than targeted [28]. Sampling inconsistencies across different species mean
that sample sizes of virus isolates are not appropriate to infer rates of interspecies transmission
among wild bird taxa (i.e. mallard, Anas platyrhynchos to northern pintail, A. acuta). Neverthe-
less, the data from wild birds was well suited for estimating viral flow between wild and domes-
tic systems. In our analysis we assumed that the virus behaves similarly in all wild species and
classified isolates as either ‘wild’ or ‘domestic’ to estimate viral transmission rate between
populations.

Phylogenetic reconstruction and source/sink dynamics
Phylogenetic reconstruction of the H9-HA gene showed a mixture of North American and
Eurasian wild bird isolates and two recently diverged poultry lineages (G1 and Ck/Bei lineages;
Fig 2A and S3 Fig), consistent with previous studies [3, 29–31]. Our analysis demonstrated that
the H9 lineage was younger and less geographically structured than other HA subtypes [8, 32,
33]. The estimated tree root age from sampled H9 strains revealed an origin between 1964 and
1975, suggesting a recent selective sweep removed genetic signals of long-term geographic
structuring from the population. Periodic sweeps have been implicated in lasting changes in
the viral population of multiple subtypes [33, 34].

We estimated the ancestral locations of isolates collected from the 9 discrete geographic
regions defined above (Fig 2A) and stratified the observations as viruses collected from either
wild or domestic birds. We found frequent viral flow among regions and identified East/Cen-
tral China (Ck/Bei lineage) and the Middle East (G1 lineage) as the primary sources for H9
virus spread among poultry (Fig 2B and Table 1). We determined the number of transitions
emerging from each ecosystem state from 1998 through 2013, and show that the viral popula-
tion was primarily emerging from domestic populations with most transitions into other
domestic populations (Fig 2B). Approximately 90% of all transitions emerged from the domes-
tic populations. The mean waiting time in each state as a proportion of the total phylogenetic
tree time show that the populations was primarily circulating among poultry located in East/

Influenza Transmission betweenWild and Domestic Populations

PLOS Pathogens | DOI:10.1371/journal.ppat.1005620 May 11, 2016 5 / 20



Fig 2. Phylogenetic estimation of ecological interactions and geographic spread. (A) H9-HA
phylogenetic tree for global isolates where branches are coloured according to discrete geographic region
and thick and thin lines indicate ancestral transitions between natural and agricultural ecosystems
respectively (B)Graph showing the proportional Markov jump counts between ecosystems over time (C)
Heat maps showing mean H9 migrations estimated to and from East China per year. Heat maps for other
regions are shown in S4 Fig.

doi:10.1371/journal.ppat.1005620.g002
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Central China and the Middle East (Table 1). Date estimates suggested these two regional pop-
ulations diverged around 1988 (95% Bayesian Credible Interval: BCI 1985–1990), coinciding
with industrialization of poultry production in Asia [35]. Our results also suggest that both
CK/Bei and G1 lineages emerged from independent wild bird introductions. Over the last
decade these regions have acted as two distinct and persistent gene pools (Fig 2B and Table 1),
reflecting the establishment of East Asia and the Middle East as independent centers of poultry
production [14].

In our analysis we used a non-reversible model such that the direction of migration could
be inferred to assess whether a region acted as a source or a sink from 1998 through 2013 [25,
36, 37]. For each location, we averaged the number of state changes observed/year for trees
sampled from the posterior distribution. Even though East China was a persistent source popu-
lation, the transmission was primarily limited to within China. East China primarily receives
viruses from Central China and vice versa (Fig 2C and S4 Fig). Prior to 2003 there was some
exchange with Japan. The rapid disruption in viral flow between these regions corresponded
with restrictions on live poultry exports after the emergence and regional spread of highly path-
ogenic avian influenza H5N1 [35]. The Middle East region was primarily a sink for G1 lineage
viruses originating in South Asia and Europe (S4 Fig). Transmission from the Middle East to
South Asia and Europe, although rare, was evident in other lineages (S4 Fig).

Our results showed enhanced risk of viral emergence from East China, whereas Western
China and Southeast Asia represent regions with enhanced risk of receiving H9 viruses (Table 2).
By evaluating the relative risk for regional source/sink transmission from domestic or wild birds,
we see enhanced risk for transmission originating from wild birds in Japan/South Korea and
Europe. In contrast, wild birds from the Middle East, South Asia, East and Central China were
more likely to receive viruses. There was enhanced risk for domestic birds in East China, South
Asia and the Middle East to be a source for transmission of H9 viruses. Domestic birds in Japan/
S Korea, Western China, Southeast Asia and Europe were more likely to be sinks (Table 2).

Migration patterns and ecosystem interactions
Domestic-to-wild virus communications were restricted to within regions, whereas wild-to-
domestic transmissions occurred both within and between regions (Table 3). Two-way viral

Table 1. Mean waiting times for the H9 population in each state calculated as a proportion of the total
branch times across the phylogenetic tree sampled per MCMC*.

Ecotype

Domestic Wild

Japan/Korea 0.078 (0.069, 0.093) 0.046 (0.027, 0.089)

E China 0.196 (0.171, 0.229) 0.005 (0.002, 0.013)

C China 0.153 (0.124, 0.183) 0.012 (0.009, 0.019)

W China 0.047 (0.039, 0.058) -

SE Asia 0.023 (0.015, 0.035) 0.000 (0, 0.007)

S Asia 0.086 (0.078, 0.095) 0.001 (0, 0.008)

Middle East 0.187 (0.177, 0.200) 0.013 (0.007, 0.023)

Europe 0.022 (0.008, 0.033) 0.029 (0.02, 0.044)

N America - 0.101 (0.062, 0.128)

*calculated from the final 1000 sampled MCMC steps. Mean values and 99% BCI are presented in the

brackets.

doi:10.1371/journal.ppat.1005620.t001
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flow between ecosystems occurred within China and the Middle East, emphasizing the impor-
tance of these regions for ecosystem interactions (Table 3). Domestic-to-domestic transmission
was between adjacent regions with no significant long distance migrations (Fig 3A). In con-
trast, supported wild-to-wild transmissions occurred over long and short distances (Fig 3A).
Our results suggest that poultry systems have provided a persistent source for regional H9
spread, whereas wild bird-mediated dispersal provided a mechanism for both intercontinental
(Japan/S Korea-North America and Japan/S Korea-Europe) and regional spread (East Asia-
Southeast Asia) along known waterbird migratory routes [38, 39] (Fig 3A). Despite strong sta-
tistical support for these migration events, the importance of Japan and South Korea for long
distance wild bird carriage of viruses is difficult to assess due to sparseness of wild bird sam-
pling in this region (Fig 2A). We also found strong support for wild-bird mediated viral migra-
tion between North America and the Middle East (Table 3). In both locations, viruses were
isolated from gulls and shorebirds. In our reconstruction there was more than 10 years of
under-sampled diversity between viruses in gulls from the Republic of Georgia and the putative
North American ancestor. It is unlikely that this was a direct transmission between popula-
tions. The most parsimonious explanation is that this virus transmitted among gulls during
this period, implying that persistence in wild bird populations may contribute to the long-dis-
tance spread of H9 viruses.

Integrating ecosystem and region into our migration model provided the most comprehen-
sive description of global H9 distribution and diversity. Domestic-to-domestic transitions
among regions, especially between East China and Central China, were significantly faster than
all other estimated migration patterns, suggesting poultry trade was likely responsible for
spreading H9 subtype virus (Fig 3B and 3C). This trend was also reflected at the global scale,
whereby migration rates among domestic birds was significantly higher than among wild birds
and between ecosystems (wild-to-domestic or domestic-to-wild) (Fig 3).

We chose to extend our model with analysis of AIV subtypes H3 and H6 HA gene sequences.
Similar diffusion patterns (i.e. ecosystem transition patterns or rates) between subtypes may
suggest similar underlying processes. Analysis of H3 subtype HA gene sequences showed similar
results to those described above for H9 (S5 Fig, S6 Fig and S3 Table). In contrast, the role of

Table 2. Mean relative risk (RR) ratios for each region to act as a global source or sink population esti-
mated from the total number of Markov jumps from or to each discrete state.

Overall RR* RR by Ecotype

Domestic Wild

Japan/Korea 0.94 (0.36, 1.50) 0.18 (0.12, 0.53) 8.30† (1.00, 15.87)

E China 3.08 (1.64, 5.23) 4.06 (1.80, 8.59) 0.12 (0.00, 0.76)

C China 1.12 (0.59, 1.80) 1.19 (0.58, 2.14) 0.49 (0.35, 0.89)

W China 0.04 (0.00, 0.21) 0.04 (0.00, 0.18) -

SE Asia 0.17 (0.00, 0.40) 0.13 (0, 0.38) 0.59 (0.00, 2.33)

S Asia 1.23 (0.57, 2.00) 2.12† (0.68, 5.19) 0.05† (0.00, 1.06)

Middle East 0.92 (0.73, 1.23) 2.30 (1.34, 5.87) 0.49 (0.17, 0.89)

Europe 1.01 (0.60, 2.00) 0.04 (0.00, 0.57) 6.75 (2.63, 11.65)

N America 6.12 (0.00, 50.00) - 3.89 (0.00, 22.00)

Bolded values indicate those regions where the 99% BCI does not cross 1 indicating significance. RR

values >1 indicate source region; <1 indicate sink region.

*Overall RR combines domestic and wild bird transitions.
† Indicates where the 95% BCI does not cross 1.

doi:10.1371/journal.ppat.1005620.t002
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Fig 3. Inferred migration rates and patterns. (A)Map showing statistically supported transitions between
geographic regions by ecosystem. Line thickness corresponds to viral flow rates shown in Table 2 (thinnest<0.5;
�0.5<1;�1<2;� 2 thickest). (B)Density distribution of statistically supported mean transition rates between
ecosystems. *Domestic-to-domestic rates are significantly faster than domestic-to-wild (BF>100), wild-to-domestic
(BF = 62.3), and wild-to-wild (BF = 39.4). (C) Statistically supported mean migration rates per MCMC step of wild-to-
wild avian transitions versus domestic-to-domestic avian transitions.

doi:10.1371/journal.ppat.1005620.g003
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virus ecosystem interactions in determining viral distribution of H6 subtype viruses was less
clear, even though similar transmission patterns were observed (S7 Fig, S4 Table). Despite evi-
dence for two-way transmission of H6 viruses between wild or domestic populations (S8 Fig
and S4 Table), our analysis shows no support for either ecosystem playing a larger role in the
distribution of these viruses (see S1 Text).

Our model for ancestral state reconstruction was restricted to locations and ecosystems
where viruses were observed, which results in an inherent bias in the reconstruction of migra-
tion or ecosystem transitions. For example, in our analysis of H9 subtype virus, wild bird iso-
lates were not observed from western China and therefore, this state was not represented in
our ancestral state reconstruction. While it is possible that the virus population did spend time
circulating among wild birds in western China, the lack of contemporary observations imposes
limitations on the ancestral state reconstruction approach taken in this study. Similarly, North
American H9 isolates from domestic birds were not present in our reconstruction of migration
patterns and ecosystem interactions. To investigate if our ancestral reconstruction was sensitive
to sampling bias, we randomized the location assignments at the tips throughout the MCMC
procedure to determine if the posterior transition rate estimate and root state probability con-
verged on the expected prior under the sampling scenario we used, as well as randomly gener-
ated alternatives [37]. For each subtype analyzed the posterior empirical frequency converged
to the prior root state probability for all sampling scenarios (S9 Fig). In addition, the ecosystem
transition rate estimates converged on the prior expectation where all rates were approximately
equal (S10, S11 and S12 Figs). Despite uneven sampling of domestic and wild populations
these analyses suggest that signals of ecosystem/spatial structure in the data inform our esti-
mates and were not biased by the sampling scheme.

Discussion
Our findings highlight that transmission among domestic flocks drove the majority of H9 dis-
persal to adjacent regions. Generally, wild bird migrations provide opportunities for the wide-
spread movement of viruses with pandemic potential, but this did not play a greater role in
viral spread than transmission among poultry populations, despite frequent transmission
between wild and domestic birds. The most significant contribution from wild birds to emerg-
ing AIV ecology is the redistribution of gene segments over large distances, thereby increasing
biodiversity and creating opportunities for novel variants to emerge. Failure to control H9 out-
breaks in domestic populations can therefore contribute to the emergence and spread of new
influenza variants [20]. Our results suggest that viral flow between wild and domestic systems
contributes to the persistence, and spread of AIV.

The continued circulation of AIV in domestic populations poses a public health risk [2]. In
this study, we capitalized on the robust surveillance of H9 viruses among avian populations to
elucidate the role of viral transmission between wild and domestic ecosystems in the global
spread and persistence of AIV. Parallels exist between the mechanisms of H9N2 global dis-
persal uncovered here and other subtypes. Most notably, transmissions of HPAI H5N1, and
recently HPAI H5N8, have been perpetuated and spread by both wild bird migration and
domestic poultry trade [13, 40, 41]. The complex interactions characterizing these systems
have contributed to the genetic diversity and widespread diffusion of these viruses throughout
Asia, Africa, Europe, and most recently, North America [4, 11].

Similar models may be extended to understand the mechanisms of spread and emergence of
other influenza subtypes, although the paucity of surveillance data may be a limiting factor.
While analysis of H3 subtype virus HA gene sequences supported our findings that transitions
among domestic populations may be driving the spread of influenza viruses, our analysis of H6
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viruses was less clear. H6 subtype viruses were prevalent in domestic ducks in southern China
[24]. While 75% of the global duck production (including reared wild ducks) occurs in China
[42] production is primarily for domestic consumption, with Hong Kong as the largest
importer of duck meat [35]. Even though the large-scale transmission patterns were similar
across subtypes, the binning of discrete geographic states used in our analysis of H6 could not
capture the majority of domestic trade within China. It is likely that alternative sampling strate-
gies are necessary to investigate the role of ecosystems interactions and poultry trade in main-
taining H6 subtype populations.

Production systems that promote the two-way transmission of viruses between wild and
domestic avian hosts facilitate the generation of potentially pandemic AIV and may lead to
widespread outbreaks that are difficult to contain. Surveillance programs focused on detecting
highly pathogenic subtypes in symptomatic poultry falls short of identifying the mechanisms
of emergence, spread and genomic reshuffling. Active systematic surveillance for AIV in both
wild and domestic populations allow for the continued development of models needed to test
the role of various species or populations in viral persistence. A limitation of this study is that
reconstruction of viral movement patterns was limited to transmission among the populations
surveyed. It is likely that unsampled populations play a role in the spread and persistence of
AIV. Systematic surveillance programs are critical to assess the risk of disease emergence and
spread of AIV by wild migratory birds. Analysis of long-term surveillance data enables mean-
ingful insights necessary to develop appropriately informed predictive models. Inferences from
such models are consequential for pandemic preparedness and livestock protection.

Materials and Methods

Poultry trade relationships
Using available census data for chicken and ducks we produced heat maps showing poultry
production intensity. Mapping all available H9-HA sequence data on top of the heat maps
allows us to visually assess the distribution of sampling and production regions. This assess-
ment was used to determine appropriate geographic regions to incorporate into our model and
identify regions with few samples. Data on the international trade of live poultry from 1995–
2011 (the most current year of data available) was downloaded from the United Nations, Food
& Agriculture Organization (UN-FAO: faostat3.fao.org, accessed June 11, 2015). The quantity
of chickens and ducks traded was chosen as the metric to assess trade relationships. All years
were summed to generate long-term estimates of international trade and countries were aggre-
gated into 7 regions: Japan/South Korea, China, South East Asia, South Asia, Middle East,
Europe and North America, broadly consistent with georegions used for the phylogeographic
model. The quantity of exports and imports was compared for each region and only the maxi-
mum trade quantity linking two regions was recorded due to inconsistencies in data reported.

Distribution of isolates and dataset design
All available H9 influenza A HA gene sequences were downloaded from the Influenza Virus
Resource database (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) on March 30,
2014. Accession numbers of newly sequenced viruses are presented in S1 Table. The data ana-
lyzed, including isolation dates, latitude, longitude and accession numbers are presented in the
attached S1 Dataset. Sequences included in the dataset were subject to the following criteria: a)
sequences had known location, host, and isolation date; b) for sequences with the same loca-
tion, date of isolation and 100% similarity a single representative was retained; c) vaccine,
derivative, and recombinant sequences were excluded; and d) sequences less than 1000
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nucleotides in length were excluded. Locations with fewer than 10 taxa, as well as taxa collected
prior to 1970 were excluded.

The remaining taxa were coded by both geographic region and ecosystem (‘wild’ or ‘domes-
tic’). The wild classification included migratory birds (i.e. Anseriformes, Charadriiformes, etc.).
The agricultural ecosystem included domestic birds raised for consumption (Galliformes
including chicken, quail and pheasant; and Anseriformes including domestic duck and goose).
See S1 Text for detailed descriptions of data stratification and subsampling. The final dataset
consisted of 955 taxa, which were coded into 9 geographic regions: Japan/South Korea
(n = 116), China–East (n = 147), China–Central (n = 179), China–West (n = 94), Southeast
Asia (n = 18), South Asia (n = 93), Middle East (n = 210), Europe (n = 36), and North America
(n = 62). 178 taxa were isolated from wild birds and the remaining from domesticated poultry.
S2 Table presents detailed stratification of the dataset by region and ecosystem and S2 Fig
shows the H9-HA sequence/location/year before and after subsampling.

Two additional datasets were assembled to investigate if model inferences from analysis of
the H9 dataset could be generalized to other influenza A virus subtypes. Low pathogenic avian
influenza A H3 and H6 subtype viruses have been sampled from both ecosystems and were
chosen as comparison datasets. Even though AIV has a global distribution, surveillance and
reporting is inconsistent and data availability for both wild and domestic birds can be limited.
The AIV H3 and H6 subtype spatial distribution of wild and domestic birds sampled were sim-
ilar to those of H9, but not identical. For the H3 subtype, sequence data was available from
North Asia, including Russia and Mongolia, but none were available from western China,
South Asia or the Middle East. For the H6 subtype no sequence data was available from South
Asia. Limiting our ancestral state reconstruction to location states that overlapped between
datasets would result in the exclusion of substantial data. Variation in data availability, loca-
tions sampled, and dataset design is discussed in the S1 Text. All available H3 and H6 subtype
HA gene sequence data was downloaded from the Influenza Virus Resource database and
screened based on the criteria described above (S2 Table).

Bayesian phylogenetic and coalescent analysis
For each of the gene segments analyzed, Bayesian phylogenetic trees were estimated using
BEAST v.1.8 [43] with an uncorrelated lognormal relaxed molecular clock [44] that allows for
rate variation across lineages. The general time-reversible model of nucleotide substitution
(+ gamma + invariant sites) was used along with a Bayesian skyline coalescent tree prior. A
minimum of three independent runs of 150 million generations were performed and combined
after removal of burn-in to achieve an Effective Sample Size of>200 as diagnosed in Tracer
v1.6.

Ancestral state reconstruction of host ecology and location of isolation
Phylogenies record the history of viral exchange between ecosystems and the gene flow
between spatially sampled populations [4, 6, 7, 32, 45–48]. By integrating both ecosystem and
geography into the phylogenetic model, we can estimate the relative contribution of each to the
global distribution and diversity of viruses in circulation. We used a non-reversible continu-
ous-time Markov chain model to estimate the migration rates between geographical regions
and the general patterns of H9 virus circulation in different avian populations [25]. Here we
estimate the network linking the discrete wild and domestic populations distributed across
regions. By defining the geographically and ecologically discrete characters in our model we
were able to distinguish whether inter-regional migration was between domestic populations
or wild animals. In addition, we estimated the rate of viral transmission between wild and
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domestic flocks and where the ecosystem interface was porous. A limitation of this approach
is that realistic measurements of bird density and disease prevalence were not accounted for
within our model.

A Bayesian stochastic search variable selection (BSSVS) was employed to reduce the number
of parameters to those with significantly non-zero transition rates [25]. The BSSVS explores
and efficiently reduces the state space by employing a binary indicator (I). A Bayes factor (BF)
can be computed to assess the support for individual transitions between discrete states. We
identify a transition as important when P(I = 1|data)>0.5. This analysis was conducted with a
Poisson prior on the number of non-zero rates with a mean equal to the minimum number of
rates required to connect the discrete ecological/geographical region states. We applied this to
our analysis of the H9 dataset and determined the critical BF>14 (Poisson prior mean = 15).
The same criterion was applied to our analysis of H3 (Poisson prior mean = 11) and H6 (Pois-
son prior mean = 14) datasets and determined a critical Bayes factor>10 and> 12 respec-
tively. Strength of statistical supports were interpreted as follows; 10� BF<30 indicating
strong support, 30� BF<100 indicates very strong support and BF>100 indicating decisive
support [8, 25, 32].

We assessed statistical support of rate differences (wild> domestic and domestic< wild)
by computing Bayes factors. The Bayes factors for differences in migration rates (r) were esti-
mated by the ratio of posterior odds (P(r1 > r2 | Data)/P(r2 > r1 | Data)) versus prior odds
P(r1 > r2)/P(r2 > r1), where the prior odds ratio was approximately 1 [8, 32].

Model sensitivity to sampling bias
Domestic populations were sampled much more intensively than wild populations (S1 Text).
To investigate if our reconstruction was sensitive to data heterogeneity, we consider the prior
expectation for the root discrete state frequencies and mean ecosystem transition rates for the
sampling scheme used. If the discrete state distribution at the root is correlated with the loca-
tion frequencies at the tips, we can expect that ancestral reconstruction throughout the entire
phylogeny will be influenced by this tip-location sampling frequency. We randomized the loca-
tion assignments at the tips throughout the MCMC procedure to investigate this possibility
[37]. Similarly, if uneven sampling influences ecosystem transition rates then we can expect the
mean rates to deviate from the prior. We further tested the model sensitivity to alternative sam-
pling procedures where the number of sequences sampled was randomly pruned from a maxi-
mum of 955 sequences to a minimum of 73 sequences. Analysis of each sampling scheme was
repeated three times. This sensitivity analysis was carried out for the final H3 and H6 subtype
datasets. Our results quickly converged on the prior root location probability for all subtypes
(equal state frequencies; S5 Fig) and ecosystem transition rate probability (equal mean rates; S6
Fig) indicating that the sampling frequencies had little impact on the model inferences a
posteriori.

Source/sink dynamics and relative risk of viral emergence
To assess the contribution of each region as a viral source or sink in the migration network,
state jumps at the tree nodes, representing a state transition event (i.e. migration or ecosystem
interaction) were counted [36]. We used a non-reversible model and therefore the direction of
gene flow between states can be determined to assess which region was either source or sink.
Heat maps representing the average number of jumps per year estimated from the last 1000
posterior sampled trees were generated. Due to the increase in surveillance efforts post-1997’s
Hong Kong H5N1 outbreak and recent intensification in poultry production, our analysis only
considered migration events between 1998 and 2013.
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Even though the explicit migration events are not observed, the waiting times between state
changes can be tracked on the phylogeny. The duration that a particular state is observed
before transitioning to another state (Markov reward) was recorded on a branch-by-branch
basis from the posterior sampling of phylogenetic trees [49]. These Markov rewards were cal-
culated for each tree and ecosystem/location state in our model.

We further assessed the relative risk of each location as a viral source or sink population
using 2x2 contingency tables [50]. The total jump counts in to or out of each discrete state were
obtained for each step of the Bayesian MCMC. Contingency tables containing four cells (A, B,
C, and D) were populated for each combination of regions. For example, to calculate the rela-
tive proportion of times viruses emerged from Japan and migrated to North America, the col-
umns of the contingency table denote events in which Japan was the geographic source (left
column) and events in which Japan was not the source (right column). Likewise, the rows of
the contingency table can be denoted as events in which North America was the geographic
sink of a transition (top row) and events in which was not the sink (bottom row). Therefore,
cell A in this example includes the total number of estimated events in which viruses from
Japan were introduced into North America; cell B includes the total introductions from other
regions (not Japan) into North America; cell C includes the total number of introductions
from Japan into other regions (not North America), and cell D includes the total number of
mutually exclusive events in which Japan was not the geographic source and North America
was not the geographic sink. The relative proportion of introductions from Japan into North
America will be calculated as [A/(A+B)]/[C/(C+D)]. The proportion of total times where
North America was the sink when Japan was the source was represented by [A/(A+B)]. Like-
wise, [C/(C+D)] represents the proportion of total times when viruses entered other regions
(not North America) where Japan was the source. The ratio of these proportions represent the
relative risk of Japan as the source when North America was the sink compared to when other
regions were the geographic sinks. These ratios were calculated per MCMC step and averaged
across all steps for each in order to incorporate phylogenetic uncertainty.

Data deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.601fd. [51]

Ethics statement
All studies involving the collection of samples from wild and domestic animal species are con-
ducted in compliance with the policies of the National Institutes of Health and the Animal
Welfare Act, and with the approval of the St. Jude Children's Research Hospital Institutional
Animal Care and Use Committee (Protocol Number 546-100324-10/14, approved July 20,
2015) and Massachusetts Institute for Technology (Protocol Number 0515-046-18, approved
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time estimates.
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(PDF)
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and domestic animals. (A)Map showing statistically supported transitions between geo-
graphic regions by ecosystem. Line thickness corresponds to viral flow rates shown in S3 Table
(thinnest<0.5; 0.5 to<1; 1 to<2;�2 thickest). (B) Density distribution of statistically sup-
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S6 Fig. Bayesian relaxed clock phylogenetic MCC tree of global H3 HA gene sequences with
taxon names. Purple bars on nodes indicate 95% Bayesian credibility intervals of divergence
time estimates.
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S7 Fig. Inferred migration rates and patterns for H6 subtype viruses sampled from wild
and domestic animals. (A)Map showing statistically supported transitions between geo-
graphic regions by ecosystem. Line thickness corresponds to viral flow rates shown in S4 Table
(thinnest<0.5; 0.5 to<1; 1 to<2;�2 thickest). (B) Density distribution of statistically sup-
ported mean transition rates between ecosystems. (C) Statistically supported mean migration
rates per MCMC step of wild-to-wild avian transitions versus domestic-to-domestic avian
transitions.
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(PDF)
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