2,543 research outputs found

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    Automated knowledge capture in 2D and 3D design environments

    Get PDF
    In Life Cycle Engineering, it is vital that the engineering knowledge for the product is captured throughout its life cycle in a formal and structured manner. This will allow the information to be referred to in the future by engineers who did not work on the original design but are wanting to understand the reasons that certain design decisions were made. In the past, attempts were made to try to capture this knowledge by having the engineer record the knowledge manually during a design session. However, this is not only time-consuming but is also disruptive to the creative process. Therefore, the research presented in this paper is concerned with capturing design knowledge automatically using a traditional 2D design environment and also an immersive 3D design environment. The design knowledge is captured by continuously and non-intrusively logging the user during a design session and then storing this output in a structured eXtensible Markup Language (XML) format. Next, the XML data is analysed and the design processes that are involved can be visualised by the automatic generation of IDEF0 diagrams. Using this captured knowledge, it forms the basis of an interactive online assistance system to aid future users who are carrying out a similar design task

    The missing GeV {\gamma}-ray binary: Searching for HESS J0632+057 with Fermi-LAT

    Get PDF
    The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a \gamma-ray binary, a subclass of the high mass X-ray binary (HMXB) population, through the detection of an orbital period of 321 days. We performed a deep search for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright \gamma-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated a Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5 deg circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1-100 GeV energy range integrating over ~3.5 years of data; with a 95% flux upper limit of F_{0.1-100 GeV} < 3 x 10-8 ph cm-2 s-1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter timescales (days--months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope (GBT). No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 \mu Jy at 2/9 GHz. The LAT flux upper limits combined with the detection of HESS J0632+057 in the 136-400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the \gamma-ray emission.Comment: 11 pages, 4 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS) Main Journa

    Spectral line shape of resonant four-wave mixing induced by broad-bandwidth lasers

    No full text
    We present a theoretical and experimental study of the line shape of resonant four-wave mixing induced by broad-bandwidth laser radiation that revises the theory of Meacher, Smith, Ewart, and Cooper (MSEC) [Phys. Rev. A 46, 2718 (1992)]. We adopt the same method as MSEC but correct for an invalid integral used to average over the distribution of atomic velocities. The revised theory predicts a Voigt line shape composed of a homogeneous, Lorentzian component, defined by the collisional rate Γ, and an inhomogeneous, Doppler component, which is a squared Gaussian. The width of the inhomogeneous component is reduced by a factor of √2 compared to the simple Doppler width predicted by MSEC. In the limit of dominant Doppler broadening, the width of the homogeneous component is predicted to be 4Γ, whereas in the limit of dominant homogeneous broadening, the predicted width is 2Γ. An experimental measurement is reported of the line shape of the four-wave-mixing signal using a broad-bandwidth, "modeless", laser resonant with the Q1 (6) line of the A2 Σ - X2 Π(0,0) system of the hydroxyl radical. The measured widths of the Voigt components were found to be consistent with the predictions of the revised theory

    Long-term spectral and timing properties of the soft gamma-ray repeater SGR 1833-0832 and detection of extended X-ray emission around the radio pulsar PSR B1830-08

    Full text link
    SGR 1833-0832 was discovered on 2010 March 19 thanks to the Swift detection of a short hard X-ray burst and follow-up X-ray observations. Since then, it was repeatedly observed with Swift, Rossi X-ray Timing Explorer, and XMM-Newton. Using these data, which span about 225 days, we studied the long-term spectral and timing characteristics of SGR 1833-0832. We found evidence for diffuse emission surrounding SGR 1833-0832, which is most likely a halo produced by the scattering of the point source X-ray radiation by dust along the line of sight, and we show that the source X-ray spectrum is well described by an absorbed blackbody, with temperature kT=1.2 keV and absorbing column nH=(10.4+/-0.2)E22 cm^-2, while different or more complex models are disfavoured. The source persistent X-ray emission remained fairly constant at about 3.7E-12 erg/cm^2/s for the first 20 days after the onset of the bursting episode, then it faded by a factor 40 in the subsequent 140 days, following a power-law trend with index alpha=-0.5. We obtained a phase-coherent timing solution with the longest baseline (225 days) to date for this source which, besides period P=7.5654084(4) s and period derivative dP/dt=3.5(3)E-12 s/s, includes higher order period derivatives. We also report on our search of the counterpart to the SGR at radio frequencies using the Australia Telescope Compact Array and the Parkes radio telescope. No evidence for radio emission was found, down to flux densities of 0.9 mJy (at 1.5 GHz) and 0.09 mJy (at 1.4 GHz) for the continuum and pulsed emissions, respectively, consistently with other observations at different epochs.Comment: 12 pages, 7 colour figures and 3 tables, accepted for publication in MNRAS. Figure 6 in reduced quality and abstract abridged for astro-ph submissio

    Expedition 302 geophysics: integrating past data with new results

    Get PDF
    In preparation for IODP Expedition 302, Arctic Coring Expedition (ACEX), a site survey database comprising geophysical and geological data from the Lomonosov Ridge was compiled. The accumulated database includes data collected from ice islands, icebreakers, and submarines from 1961 to 2001. In addition, seismic reflection profiles were collected during Expedition 302 that complement the existing seismic reflection data and facilitate integration between the acoustic stratigraphy and the Expedition 302 drill cores. An overview of these data is presented in this chapter.It is well recognized that collecting geophysical data in ice-covered seas, in particular the Arctic Ocean, is a challenging endeavor. This is because much of the Arctic Ocean is continuously covered with ice thicknesses that vary from 1 to 6 m. Over the continental shelves, sea ice can be absent during summer months, but it is present year-round in the central basins. This ice cover is the most dominant feature of the Arctic Ocean environment. It circulates in the ocean basin in two main circulation patterns: the Transpolar Drift and the Beaufort Gyre (see the "Expedition 302 summary" chapter; Rudels et al., 1996).Expedition 302 sites are located within the less severe of these two ice circulation systems, the Transpolar Drift, which primarily moves sea ice from the shelves where it is formed (the Laptev and East Siberian Seas) across the basin and exits through the Fram Strait. During late summer, concentrations of Arctic sea ice can be &lt;100% (10/10 ice cover), making it possible for icebreakers to operate. Average ice concentrations in the central Arctic Ocean during summer months can locally vary from partially open water (6/10) to completely ice covered (10/10). This sea-ice cover can move at speeds up to 0.5 kt.Early Arctic Ocean geophysical exploration was performed from ice-drift stations (Weber and Roots, 1990). However, the tracks from these drifting ice stations were controlled "by the whims of nature" (Jackson et al., 1990), preventing detailed, systematic surveys of predetermined target areas. These ice-drift stations were set up on stable icebergs that were trapped in sea ice and moved generally with the large drift patterns, but locally they were erratic, so preselected locations could not be surveyed. In the late 1980s, single icebreakers began to be used for oceanographic survey work in the Arctic Ocean. Between 1991 and 2001, four scientific icebreaker expeditions to the Lomonosov Ridge took place. These cruises all experienced local sea-ice conditions varying between 8/10 and 10/10. During these expeditions, towed geophysical equipment was occasionally damaged or lost, either because of a rapidly closing wake caused by local ice pressure or because ice had cut the air gun array.Conventionally powered icebreakers reached as far as the North Pole for the first time during the 1991 Expedition (Andersen and Carlsonn, 1992; Fütterer, 1992). Geophysical results from this expedition collected two important reflection profiles, AWI-91090 and AWI-91091, that crossed the Lomonosov Ridge between 87° and 88°N. These profiles imaged a ~450 m thick, well-stratified and apparently undisturbed drape of sediments overlying a prominent acoustic unconformity (Jokat et al., 1992) that spawned the idea to conduct a paleoceanographic drilling expedition to this Ridge.The use of US Navy nuclear submarines for geophysical mapping was implemented through the Science Ice Exercise program (SCICEX) (Newton, 2000). The development of the Seafloor Characterization and Mapping Pods (SCAMP), which hold a Chirp subbottom profiler, swath bathymetric profiler, and side scan sonar, was an essential part of the SCICEX program (Chayes et al., 1996). In 1999, the Lomonosov Ridge geophysical database was augmented with acoustic data acquired during the SCICEX program using the SCAMP system mounted on the US nuclear submarine USS Hawkbill (Edwards and Coakley, 2003)

    Multi-wavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star

    Get PDF
    On 2008 May 14, the Burst Alert Telescope aboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of ~2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of ~3.5E-8 erg/cm^2/s, we infer a source distance of D<9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R=15.9 during the X-ray burst to R=18.9 thereafter. Analysis of post-burst Swift/XRT observations, as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of ~2E35 (D/9.5 kpc)^2 erg/s. Optical and infrared photometry together with the detection of a narrow Halpha emission line (FWHM=292+/-9 km/s, EW=-9.0+/-0.4 Angstrom) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The Halpha emission demonstrates that the donor star is hydrogen-rich, which effectively rules out that this system is an ultra-compact X-ray binary.Comment: Accepted for publication in MNRAS, 13 pages, 6 figures, 5 table

    Sedimentation and subsidence history of the Lomonosov Ridge

    Get PDF
    During the first scientific ocean drilling expedition to the Arctic Ocean (Arctic Coring Expedition [ACEX]; Integrated Ocean Drilling Program Expedition 302), four sites were drilled and cored atop the central part of the Lomonosov Ridge in the Arctic Ocean at ~88°N, 140°E (see Fig. F18 in the "Sites M0001–M0004" chapter). The ridge was rifted from the Eurasian continental margin at ~57 Ma (Fig. F1) (Jokat et al., 1992, 1995). Since the rifting event and the concurrent tilting and erosion of this sliver of the outer continental margin, the Lomonosov Ridge subsided while hemipelagic and pelagic sediments were deposited above the angular rifting unconformity (see Fig. F7A in the "Sites M0001–M0004" chapter).The sections recovered from the four sites drilled during Expedition 302 can be correlated using their seismic signature, physical properties (porosity, magnetic susceptibility, resistivity, and P-wave velocity), chemostratigraphy (ammonia content of pore waters), lithostratigraphy, and biostratigraphy. The lithostratigraphy of the composite section combined with biostratigraphy provides an insight into the complex history of deposition, erosion, and preservation of the biogenic fraction. Eventually, the ridge subsided to its present water depth as it drifted from the Eurasian margin. In this chapter, we compare a simple model of subsidence history with the sedimentary record recovered from atop the ridge
    corecore