4,317 research outputs found

    A special issue preface: radiocarbon in the Anthropocene

    Get PDF
    The Anthropocene is defined by marked acceleration in human-induced perturbations to the Earth system. Anthropogenic emissions of CO2 and other greenhouse gases to the atmosphere and attendant changes to the global carbon cycle are among the most profound and pervasive of these perturbations. Determining the magnitude, nature and pace of these carbon cycle changes is crucial for understanding the future climate that ecosystems and humanity will experience and need to respond to. This special issue illustrates the value of radiocarbon as a tool to shed important light on the nature, magnitude and pace of carbon cycle change. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'

    The Teleost Retina as a Model for Developmental and Regeneration Biology

    Full text link
    Retinal development in teleosts can broadly be divided into three epochs. The first is the specification of cellular domains in the larval forebrain that give rise to the retinal primordia and undergo early morphogenetic movements. The second is the neurogenic events within the retina proper—proliferation, cell fate determination, and pattern formation—that establish neuronal identities and form retinal laminae and cellular mosaics. The third, which is unique to teleosts and occurs in the functioning eye, is stretching of the retina and persistent neurogenesis that allows the growth of the retina to keep pace with the growth of the eye and other tissues. The first two events are rapid, complete by about 3 days postfertilization in the zebrafish embryo. The third is life-long and accounts for the bulk of retinal growth and the vast majority of adult retinal neurons. In addition, but clearly related to the retina's developmental history, lesions that kill retinal neurons elicit robust neuronal regeneration that originates from cells intrinsic to the retina. This paper reviews recent studies of retinal development in teleosts, focusing on those that shed light on the genetic and molecular regulation of retinal specification and morphogenesis in the embryo, retinal neurogenesis in larvae and adults, and injury-induced neuronal regeneration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63365/1/zeb.2004.1.257.pd

    Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis

    Get PDF
    The relative capacity for watersheds to eliminate or export reactive constituents has important implications on aquatic ecosystem ecology and biogeochemistry. Removal efficiency depends on factors that affect either the reactivity or advection of a constituent within river networks. Here, we characterized Damköhler number (Da) for dissolved organic carbon (DOC) uptake in global river networks. Da equals the advection to reaction timescale ratio and thus provides a unitless indicator for DOC reaction intensity during transport within river networks. We aim to demonstrate the spatial and temporal patterns and interplays among factors that determine DOC uptake across global river networks. We show that watershed size imposes a primary control on river network DOC uptake due to a three orders of magnitude difference in water residence time (WRT) between the smallest and largest river networks. DOC uptake capacity in tropical river networks is 2–6 times that in temperate and the Arctic river networks, coinciding with larger DOC removals in warm than in cold watersheds. River damming has a profound impact on DOC uptake due to significantly extended WRTs, particularly in temperate watersheds where most constructed dams are situated. Global warming is projected to increase river network DOC uptake by ca. 19% until year 2100 under the RCP4.5 scenario

    Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    Get PDF
    © 2016 The Authors. Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endopro-teolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    The changing carbon cycle of the coastal ocean

    Get PDF
    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget

    Bouveret's syndrome as an unusual cause of gastric outlet obstruction: a case report

    Get PDF
    An 83 year old caucasian gentleman presented with vomiting and left sided abdominal pain. A subsequent upper GI endoscopy demonstrated a large smooth mass impacted within the duodenum. A cholecysto-duodenal fistula was discovered at laparotomy, with a large gallstone impacted in the duodenum. A diagnosis of Bouveret's syndrome was made. The management of this rare cause of gastric outlet obstruction is discussed

    Get screened: a pragmatic randomized controlled trial to increase mammography and colorectal cancer screening in a large, safety net practice

    Get PDF
    Abstract Background Most randomized controlled trials of interventions designed to promote cancer screening, particularly those targeting poor and minority patients, enroll selected patients. Relatively little is known about the benefits of these interventions among unselected patients. Methods/Design "Get Screened" is an American Cancer Society-sponsored randomized controlled trial designed to promote mammography and colorectal cancer screening in a primary care practice serving low-income patients. Eligible patients who are past due for mammography or colorectal cancer screening are entered into a tracking registry and randomly assigned to early or delayed intervention. This 6-month intervention is multimodal, involving patient prompts, clinician prompts, and outreach. At the time of the patient visit, eligible patients receive a low-literacy patient education tool. At the same time, clinicians receive a prompt to remind them to order the test and, when appropriate, a tool designed to simplify colorectal cancer screening decision-making. Patient outreach consists of personalized letters, automated telephone reminders, assistance with scheduling, and linkage of uninsured patients to the local National Breast and Cervical Cancer Early Detection program. Interventions are repeated for patients who fail to respond to early interventions. We will compare rates of screening between randomized groups, as well as planned secondary analyses of minority patients and uninsured patients. Data from the pilot phase show that this multimodal intervention triples rates of cancer screening (adjusted odds ratio 3.63; 95% CI 2.35 - 5.61). Discussion This study protocol is designed to assess a multimodal approach to promotion of breast and colorectal cancer screening among underserved patients. We hypothesize that a multimodal approach will significantly improve cancer screening rates. The trial was registered at Clinical Trials.gov NCT00818857http://deepblue.lib.umich.edu/bitstream/2027.42/78264/1/1472-6963-10-280.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78264/2/1472-6963-10-280.pdfPeer Reviewe

    The Imprint of Galaxy Formation on X-ray Clusters

    Get PDF
    It is widely believed that structure in the Universe evolves hierarchically, as primordial density fluctuations, amplified by gravity, collapse and merge to form progressively larger systems. The structure and evolution of X-ray clusters, however, seems at odds with this hierarchical scenario for structure formation. Poor clusters and groups, as well as most distant clusters detected to date, are substantially fainter than expected from the tight relations between luminosity, temperature and redshift predicted by these models. Here we show that these discrepancies arise because, near the centre, the entropy of the hot, diffuse intracluster medium (ICM) is higher thaachievablethroughgravitationalcollapse,indicatingsubstantialnongravitationalheatingoftheICM.Weestimatethisexcessentropyforthefirsttime,andarguethatitrepresentsarelicoftheenergeticwindsthroughwhichforminggalaxiespollutedtheICMwithmetals.Energetically,thisisonl achievable through gravitational collapse, indicating substantial non-gravitational heating of the ICM. We estimate this excess entropy for the first time, and argue that it represents a relic of the energetic winds through which forming galaxies polluted the ICM with metals. Energetically, this is onl possible if the ICM is heated at modest redshift (z \ltsim 2) but prior to cluster collapse, indicating that the formation of galaxies precedes that of clusters and that most clusters have been assembled very recently.Comment: 5 pages, plus 2 postscript figures (one in colour), accepted for publication in Natur
    corecore