89 research outputs found

    What atmospheric oxygen measurements can tell us about the global carbon cycle

    Get PDF
    This paper explores the role that measurements of changes in atmospheric oxygen, detected through changes in the O2/N2 ratio of air, can play in improving our understanding of the global carbon cycle. Simple conceptual models are presented in order to clarify the biological and physical controls on the exchanges of O2, CO2, N2, and Ar across the air‐sea interface and in order to clarify the relationships between biologically mediated fluxes of oxygen across the air‐sea interface and the cycles of organic carbon in the ocean. Predictions of large‐scale seasonal variations and gradients in atmospheric oxygen are presented. A two‐dimensional model is used to relate changes in the O2/N2 ratio of air to the sources of oxygen from terrestrial and marine ecosystems, the thermal ingassing and outgassing of seawater, and the burning of fossil fuel. The analysis indicates that measurements of seasonal variations in atmospheric oxygen can place new constraints on the large‐scale marine biological productivity. Measurements of the north‐south gradient and depletion rate of atmospheric oxygen can help determine the rates and geographical distribution of the net storage of carbon in terrestrial ecosystems

    Light-Induced Pupillary Responses in Alzheimer's Disease

    Get PDF
    The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers

    Standing Balance and Spatiotemporal Aspects of Gait Are Impaired Upon Nocturnal Awakening in Healthy Late Middle-Aged and Older Adults

    Get PDF
    Study Objectives: Nocturnal awakenings may constitute a unique risk for falls among older adults. We describe differences in gait and balance between presleep and midsleep testing, and whether changes in the lighting environment during the midsleep testing further affect gait and balance. Methods: Twenty-one healthy, late middle-aged and older (64.7 ± 8.0 y) adults participated in this repeated-measures design consisting of four overnight laboratory stays. Each night, participants completed baseline visual acuity, gait, and balance testing. After a 2-h sleep opportunity, they were awakened for 13 min into one of four lighting conditions: very dim white light (\u3c 0.5 lux); dim white light (∌28.0 lux); dim orange light (∌28.0 lux); and white room-level light (∌200 lux). During this awakening, participants completed the same sequence of testing as at baseline. Results: Low-contrast visual acuity significantly decreased with decreasing illuminance conditions (F(3,45) = 98.26, p \u3c 0.001). Our a priori hypothesis was confirmed in that variation in stride velocity and center of pressure path length were significantly worse during the mid-sleep awakening compared to presleep baseline. Lighting conditions during the awakening, however, did not influence these parameters. In exploratory analyses, we found that over one-third of the tested gait and balance parameters were significantly worse at the midsleep awakening as compared to baseline (p \u3c 0.05), and nearly one-quarter had medium to large effect sizes (Cohen d ≄ 0.5; r ≄ 0.3). Conclusions: Balance and gait are impaired during midsleep awakenings among healthy, late middle-aged and older adults. This impairment is not ameliorated by exposure to room lighting, when compared to dim lights

    Light and myopia: from epidemiological studies to neurobiological mechanisms

    Get PDF
    Myopia is far beyond its inconvenience and represents a true, highly prevalent, sight-threatening ocular condition, especially in Asia. Without adequate interventions, the current epidemic of myopia is projected to affect 50% of the world population by 2050, becoming the leading cause of irreversible blindness. Although blurred vision, the predominant symptom of myopia, can be improved by contact lenses, glasses, or refractive surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding complications such as glaucoma, myopic maculopathy, and retinal detachment, prompting the need for prevention. Epidemiological studies have reported an association between outdoor time and myopia prevention in children. The protective effect of time spent outdoors could be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.) of sunlight that is lacking in artificial lighting. Concomitantly, studies in animal models have highlighted the efficacy of light and its components in delaying or even stopping the development of myopia and endeavoured to elucidate possible mechanisms involved in this process. In this narrative review, we (1) summarize the current knowledge concerning light modulation of ocular growth and refractive error development based on studies in human and animal models, (2) summarize potential neurobiological mechanisms involved in the effects of light on ocular growth and emmetropization and (3) highlight a potential pathway for the translational development of noninvasive light-therapy strategies for myopia prevention in children.info:eu-repo/semantics/publishedVersio

    ENLIGHT: A consensus checklist for reporting laboratory-based studies on the non-visual effects of light in humans.

    Full text link
    peer reviewed[en] BACKGROUND: There is no consensus on reporting light characteristics in studies investigating non-visual responses to light. This project aimed to develop a reporting checklist for laboratory-based investigations on the impact of light on non-visual physiology. METHODS: A four-step modified Delphi process (three questionnaire-based feedback rounds and one face-to-face group discussion) involving international experts was conducted to reach consensus on the items to be included in the checklist. Following the consensus process, the resulting checklist was tested in a pilot phase with independent experts. FINDINGS: An initial list of 61 items related to reporting light-based interventions was condensed to a final checklist containing 25 items, based upon consensus among experts (final n = 60). Nine items were deemed necessary to report regardless of research question or context. A description of each item is provided in the accompanying Explanation and Elaboration (E&E) document. The independent pilot testing phase led to minor textual clarifications in the checklist and E&E document. INTERPRETATION: The ENLIGHT Checklist is the first consensus-based checklist for documenting and reporting ocular light-based interventions for human studies. The implementation of the checklist will enhance the impact of light-based research by ensuring comprehensive documentation, enhancing reproducibility, and enabling data aggregation across studies. FUNDING: Network of European Institutes for Advanced Study (NETIAS) Constructive Advanced Thinking (CAT) programme; Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust, 204686/Z/16/Z); Netherlands Organisation for Health Research and Development VENI fellowship (2020-09150161910128); U.S. Department of Defense Grant (W81XWH-16-1-0223); National University of Singapore (NUHSRO/2022/038/Startup/08); and National Research Foundation Singapore (NRF2022-THE004-0002)

    The influence of the environment and lifestyle on myopia

    Get PDF
    Background: Myopia, commonly known as near-sightedness, has emerged as a global epidemic, impacting almost one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened the risk of developing high myopia and related sight-threatening eye conditions in adulthood. This surge in myopia rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established and potential environmental and lifestyle contributors that affect the development and progression of myopia. Main body: Epidemiological and interventional research has consistently revealed a compelling connection between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in relative peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio-economic status, and education have debatable independent influences on myopia development. Conclusion: The environment exerts a significant influence on the development and progression of myopia. Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors often obscure research findings, making it challenging to disentangle their individual effects. This complexity underscores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how various environmental factors can be modified to prevent or slow the progression of myopia

    A Duration-Dependent Interaction Between High-Intensity Light and Unrestricted Vision in the Drive for Myopia Control

    Get PDF
    Purpose: To evaluate the duration-dependent and synergetic impact of high-intensity light (HL) and unrestricted vision (UnV) on lens-induced myopia (LIM) development in chickens. Methods: Myopia was induced in one eye in chicks (10 groups, n = 126) from day 1 posthatching (D1) until day 8 (D8) using –10 diopter (D) lenses. Fellow eyes remained uncovered as controls. Nine groups were exposed daily to 2, 4, or 6 hours of HL (15,000 lux), UnV (removal of –10 D lens), or both (HL + UnV). One group served as the LIM group without any interventions. Ocular axial length (AL), refractive error, and choroidal thickness were measured on D1, D4, and D8. Outcome measures are expressed as interocular difference (IOD = experimental eye – control eye) ± SEM. Results: By D8, LIM increased AL (0.36 ± 0.04 mm), myopic refraction (−9.02 ± 0.37 D), and choroidal thinning (−90.27 ± 16.44 ”m) in the LIM group (all, P < 0.001). Compared to the LIM group, exposure to 2, 4, or 6 hours of HL, UnV, or HL + UnV reduced myopic refraction in a duration-dependent manner, with UnV being more effective than HL (P < 0.05). Only 6 hours of HL + UnV (not 2 or 4 hours) prevented LIM and was more effective than UnV (P = 0.004) or HL (P < 0.001) in reducing myopic refraction and more effective than HL (P < 0.001) in reducing axial elongation. Conclusions: Daily exposure to 2, 4, or 6 hours of HL, UnV, or HL + UnV reduced lens-induced myopic refraction in a duration-dependent manner in chickens. Only 6 hours of HL + UnV completely stopped LIM development. The synergetic effect of HL and UnV is dependent on the duration of the interventions

    Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs.

    Get PDF
    BACKGROUND: Nonophthalmologist physicians do not confidently perform direct ophthalmoscopy. The use of artificial intelligence to detect papilledema and other optic-disk abnormalities from fundus photographs has not been well studied. METHODS: We trained, validated, and externally tested a deep-learning system to classify optic disks as being normal or having papilledema or other abnormalities from 15,846 retrospectively collected ocular fundus photographs that had been obtained with pharmacologic pupillary dilation and various digital cameras in persons from multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 countries were used for training and validation, and 1505 photographs from 5 other sites were used for external testing. Performance at classifying the optic-disk appearance was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity, and specificity, as compared with a reference standard of clinical diagnoses by neuro-ophthalmologists. RESULTS: The training and validation data sets from 6779 patients included 14,341 photographs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks with other abnormalities. The percentage classified as being normal ranged across sites from 9.8 to 100%; the percentage classified as having papilledema ranged across sites from zero to 59.5%. In the validation set, the system discriminated disks with papilledema from normal disks and disks with nonpapilledema abnormalities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the external-testing data set of 1505 photographs, the system had an AUC for the detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1). CONCLUSIONS: A deep-learning system using fundus photographs with pharmacologically dilated pupils differentiated among optic disks with papilledema, normal disks, and disks with nonpapilledema abnormalities. (Funded by the Singapore National Medical Research Council and the SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Program.)

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    • 

    corecore