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1-SUPPLEMENTARY APPENDIX 1: LIST OF INVESTIGATORS 

BONSAI STUDY GROUP 

 

This international consortium (BONSAI – Brain and Optic Nerve Study with Artificial Intelligence) was 

specifically created for the purpose of this study, with the contribution of numerous recognized 

neuro-ophthalmologists considered as experts world-wide. This consortium was formed by an initial 

steering committee, consisting of two groups of experts: 1) clinical neuro-ophthalmologists; and 2) 

artificial intelligence experts. 

 

a) The initial steering committee members are listed below: 

 
1. Neuro-ophthalmology 

a. Dan Milea MD PhD, Neuro-Ophthalmology department (Singapore National Eye Centre) 

and Head of the Visual Neuroscience Group, Singapore Eye Research Institute, Duke-

NUS Medical School, Singapore 

i. Principal Investigator and overall coordinator of the consortium  

b. Valérie Biousse MD and Nancy J. Newman MD, Neuro-Ophthalmologists (Atlanta, 

Georgia, USA) 

i. Joint neuro-ophthalmology clinical leads of the consortium 

c. These three neuro-ophthalmologists are world experts in neuro-ophthalmology, with a 

special interest in optic nerve head abnormalities and ocular fundus imaging. 

2. Artificial intelligence experts 

a. Tien Y. Wong MD PhD (TYW), Daniel Ting MD PhD (DT) and Yong Liu PhD (YL) 

i. Joint technical leads  

ii. Jointly, they have published >30 artificial intelligence ophthalmology articles in 

JAMA, Nature Medicine, Nature Biomedical Engineering, Lancet Digital Health, 

Nature Digital Medicine, Progress in Retinal and Eye Research, Ophthalmology, 

JAMA Ophthalmology, etc. 

iii. DT - Founding executive committee member, American Academy of 

Ophthalmology Artificial Intelligence Taskforce 

iv. Editors for artificial intelligence and data science in 4 high impact journals (TYW - 

Lancet Digital Health, JAMA Ophthalmology; DT - Ophthalmology and British 

Journal of Ophthalmology) 

 

 

The 24 local site principal investigators (PIs) were selected based on their recognized expertise in 

neuro-ophthalmology and on their ability to contribute to the consortium’s collection with reliable 

and adequate numbers of fundus photographs (and the corresponding clinical information and 

reference standards). Each site included at least one internationally-recognized senior neuro-
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ophthalmologist able to provide ocular fundus photographs associated with a definite clinical 

diagnosis (reference standard). 

 

 

b) BONSAI Study Group: List of all participating centers (alphabetical order by city): 

 

ANGERS, France 

Department of Ophthalmology 

University Hospital Angers, Angers, France 

1/ Philippe Gohier, MD -phgohier@chu-angers.fr 

2/ Barnabé Rondet-Courbis, MD-barnabe.rondet@orange.fr 

 

 

ATLANTA, GA, USA 

Departments of Ophthalmology, Neurology and Neurological Surgery 

Emory University School of Medicine, Atlanta, GA, USA 

1/ Valérie Biousse, MD -vbiouss@emory.edu 

2/ Nancy J. Newman, MD-ophtnjn@emory.edu 

3/ Caroline Vasseneix, MD-caroline.vasseneix@emory.edu 

 

 

BALTIMORE, MD, USA 

Departments of Ophthalmology, Neurology and Neurosurgery 

Johns Hopkins University School of Medicine, Baltimore, MD, USA   

1/ Neil Miller, MD-nrmiller@jhmi.edu 

 

 

BANGKOK, Thailand 

Department of Ophthalmology 

Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 

1/ Tanyatuth Padungkiatsagul, MD-Blu_c16@hotmail.com 

2/ Anuchit Poonyathalang, MD -Au.tumn@yahoo.com 

3/ Yanin Suwan, MD-Yanin.suwan@gmail.com 

4/ Kavin Vanikieti, MD-Vanikieti.kavin@gmail.com 

 

 

BOLOGNA, Italy 

1/ Giulia Amore, MD-amoregiulia@hotmail.it 

Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna  

2/ Piero Barboni, MD-p.barboni@studiodazeglio.it 

Studio Oculistico D'Azeglio, Bologna, Italy 

3/ Michele Carbonelli, MD-m.carbonelli@studiodazeglio.it 

Studio Oculistico D'Azeglio, Bologna, Italy 

4/ Valerio Carelli, MD, PhD-valerio.carelli@unibo.it 

mailto:phgohier@chu-angers.fr
mailto:barnabe.rondet@orange.fr
mailto:ophtnjn@emory.edu
mailto:caroline.vasseneix@emory.edu
mailto:nrmiller@jhmi.edu
mailto:Blu_c16@hotmail.com
mailto:Au.tumn@yahoo.com
mailto:Yanin.suwan@gmail.com
mailto:Vanikieti.kavin@gmail.com
mailto:amoregiulia@hotmail.it
mailto:p.barboni@studiodazeglio.it
mailto:m.carbonelli@studiodazeglio.it
mailto:valerio.carelli@unibo.it
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IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy 

Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, 

Italy 

5/ Chiara La Morgia, MD, PhD-chiara.lamorgia@unibo.it 

IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy 

Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, 

Italy 

6/ Martina Romagnoli, PhD-martina.romagnoli87@gmail.com 

IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy 

 

 

BORDEAUX, France  

Service d'Ophtalmologie. Unité Rétine - Uvéites - Neuro-Ophtalmologie 

Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France 

1/ Marie-Bénédicte Rougier, MD, PhD-marie-benedicte.rougier@chu-bordeaux.fr 

 

 

CHENNAI, India 

Dept of Neuro-ophthalmology. Sankara Nethralaya-A unit of Medical Research Foundation, Chennai, 

India  

1/ Selvakumar Ambika, DO,DNB-drsa@snmail.org 

2/ Komma Swetha, DO,DNB-kommaswetha2@gmail.com 

 

 

COIMBRA, Portugal: 

Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, 

Portugal 

Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Faculty of Medicine 

University of Coimbra (FMUC), Coimbra, Portugal  

1/ Pedro Fonseca, MD-pedroluisfonseca@gmail.com 

2/ Miguel Raimundo, MD-mglraimundo@gmail.com 

 

 

COPENHAGEN, Denmark 

Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark 

1/ Steffen Hamann, MD, PhD, FEBO-steffen.hamann@regionh.dk 

2/ Isabelle Karlesand, MD-anna.isabelle.wanda.karlesand@regionh.dk 

 

FREIBURG, Germany:  

Eye Center, Medical Center, Medical Faculty, University Freiburg Germany, Freiburg, Germany 

1/ Lars Fuhrmann-fuhr.lars@gmail.com 

2/ Sebastian Küchlin, MD-sebastian.kuechlin@uniklinik-freiburg.de 

3/ Wolf Alexander Lagrèze, MD-wolf.lagreze@uniklinik-freiburg.de 

 

 

mailto:chiara.lamorgia@unibo.it
mailto:martina.romagnoli87@gmail.com
mailto:marie-benedicte.rougier@chu-bordeaux.fr
mailto:drsa@snmail.org
mailto:kommaswetha2@gmail.com
mailto:mglraimundo@gmail.com
mailto:steffen.hamann@regionh.dk
mailto:anna.isabelle.wanda.karlesand@regionh.dk
mailto:fuhr.lars@gmail.com
mailto:sebastian.kuechlin@uniklinik-freiburg.de
mailto:wolf.lagreze@uniklinik-freiburg.de
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GENEVA, Switzerland 

Clinical Neuroscience Department, Geneva University Hospital, Geneva, Switzerland 

1/ Nicolae Sanda, MD, PhD-nicolae.sanda@hcuge.ch 

2/ Gabriele Thumann, MD, PD-gabriele.thumann@hcuge.ch 

 

 

GRENOBLE, France 

Department of Ophthalmology, University Hospital of Grenoble-Alpes,  

and Grenoble-Alpes University, HP2 Laboratory, INSERM U1042, Grenoble, France 

1/ Florent Aptel, MD, PhD-aptel_florent@hotmail.com 

2/ Christophe Chiquet, MD, PhD-christophe.chiquet@inserm.fr 

 

 

GUANGZHOU, China 

Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P.R. China 

1/ Kaiqun Liu, MD-liukaiqun_cm@163.com 

2/ Hui Yang  MD, PhD-13710584767@163.com 

 

 

HONG KONG, China  

Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 

Special Administrative Region, China 

Hong Kong Eye Hospital, Hong Kong Special Administrative Region, China 

1/ Carmen KM Chan, MRCP, FRCSEd(Ophth)-ckmc01@ha.org.hk 

2/ Noel CY Chan, FRCSEd(Ophth)-ccy178@ha.org.hk 

3/ Carol Y Cheung, PhD -carolcheung@cuhk.edu.hk 

  

 

LILLE, France 

Department of Ophthalmology, Lille Catholic Hospital, Lille Catholic University and Inserm U1171, 

Lille, France 

Tran Thi Ha Chau, MD-tran.hachau@ghicl.net 

 

 

LONDON, United Kingdom : 

1/ James Acheson, BM, MRCP (UK), FRCOphth-james.acheson1@nhs.net 

Moorfields Eye Hospital NHS Foundation Trust, London, UK 

National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS trust, 

London, UK. 

2/ Maged S Habib, MSc Ophth, FRCS, FRCOphth, MD-maged.habib@chsft.nhs.uk 

South Tyneside and Sunderland NHS Foundation Trust. Sunderland, UK 

3/ Neringa Jurkute, MD, FEBO-n.jurkute@nhs.net 

Moorfields Eye Hospital NHS Foundation Trust, London, UK 

UCL Institute of Ophthalmology, University College London, London, UK 

4/ Patrick Yu-Wai-Man, MB, BS, FRCPath, FRCOphth, PhD-p.yu-wai-man@nhs.net 

mailto:nicolae.sanda@hcuge.ch
mailto:gabriele.thumann@huge.ch
mailto:gabriele.thumann@huge.ch
mailto:aptel_florent@hotmail.com
mailto:liukaiqun_cm@163.com
mailto:13710584767@163.com
mailto:ckmc01@ha.org.hk
mailto:ccy178@ha.org.hk
mailto:tran.hachau@ghicl.net
mailto:james.acheson1@nhs.net
mailto:maged.habib@chsft.nhs.uk
mailto:n.jurkute@nhs.net
mailto:p.yu-wai-man@nhs.net
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Moorfields Eye Hospital NHS Foundation Trust, London, UK 

UCL Institute of Ophthalmology, University College London, London, UK 

Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK 

Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical 

Neurosciences, University of Cambridge, Cambridge, UK 

 

 

MANILA, Philippines 

American Eye Center, Mandaluyong City, Manila, Philippines 

Richard Kho, MD-rich_kho@yahoo.com 

 

 

MANNHEIM, Germany 

Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of 

Heidelberg, Mannheim, Germany 

Jost B Jonas, MD-jost.jonas@medma.uni-heidelberg.de 

 

 

MAYO-CLINIC, ROCHESTER, MN, USA 

Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA 

1/ John J. Chen, MD, PhD-chen.john@mayo.edu  

2/ Nouran Sabbagh, MD-Sabbagh.Nouran@mayo.edu 

  

 

PARIS, ROTSCHILD FOUNDATION HOSPITAL, France 

Fondation Adolphe de Rothschild, Paris, France 

1/ Catherine Vignal-Clermont, MD-cvignal@for.paris 

2/ Rabih Hage, MD-rhage@for.paris 

3/ Raoul Kanav Khanna, MD-krkhanna1@gmail.com 

 

 

SNEC, SINGAPORE 

Singapore National Eye Centre 

Singapore Eye Research Institute, Singapore 

Duke-NUS Medical School, Singapore 

Yong Loo Lin School of Medicine, National University of Singapore  

1/ Aung Tin, MD, PhD-aung.tin@singhealth.com.sg 

2/ Cheng Ching-Yu, MD, PhD-cheng.ching.yu@seri.com.sg 

3/ Ecosse Lamoureux, MSc, PhD-ecosse.lamoureux@seri.com.sg 

4/ Loo Jing Liang, MBBS, MMed, FRCS(Ed)-loo.jing.liang@singhealth.com.sg 

5/ Dan Milea, MD, PhD -dan.milea@snec.com.sg 

6/ Raymond P Najjar, PhD-raymond.najjar@seri.com.sg  

7/ Leopold Schmetterer, PhD-leopold.schmetterer@seri.com.sg 

8/ Shweta Singhal, MBBS, PhD-Shweta.singhal@snec.com.sg 

9/ Daniel Ting, MD, PhD-daniel.ting.s.w@singhealth.com.sg 

mailto:jost.jonas@medma.uni-heidelberg.de
mailto:Sabbagh.Nouran@mayo.edu
mailto:cvignal@for.paris
mailto:krkhanna1@gmail.com
mailto:dan.milea@snec.com.sg
mailto:raymond.najjar@seri.com.sg
mailto:Shweta.singhal@snec.com.sg
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10/ Sharon Tow, MBBS, FRCSEd-sharon.tow.l.c@snec.com.sg 

11/ Caroline Vasseneix, MD-caroline.vasseneix@seri.com.sg  

12/ Tien Yin Wong, MD, PhD-wong.tien.yin@singhealth.com.sg 

 

 

SINGAPORE, IHPC, AStar 

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 

Singapore 

Liu Yong, PhD-liuyong@ihpc.a-star.edu.sg 

Xinxing Xu, PhD-xuxinx@ihpc.a-star.edu.sg 

Jhia Zhubo, MSc-jiangzhubo1992@outlook.com 

 

 

SYDNEY, Australia 

Save Sight Institute, Faculty of Health and Medicine, The University of Sydney, NSW Australia.  

1/ Clare L Fraser, MBBS, MMed, FRANZCO-clare.fraser@sydney.edu.au 

 

 

SYRACUSE, NY, USA 

Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210 

1/ Luis J. Mejico, MD-mejicol@upstate.edu 

2/ Andrew L. Orenberg, MD-orenbera@upstate.edu 

 

 

TEHERAN, Iran 

Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran, 13366-16351 

1/ Masoud Aghsaei Fard, MD-masood219@gmail.com 

 

 

mailto:caroline.vasseneix@seri.com.sg
mailto:xuxinx@ihpc.a-star.edu.sg
mailto:jiangzhubo1992@outlook.com
mailto:clare.fraser@sydney.edu.au
mailto:mejicol@upstate.edu
mailto:orenbera@upstate.edu
mailto:masood219@gmail.com
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2- SUPPLEMENTARY APPENDIX 2: ADDITIONAL METHODS 

 

a) Selection of Participants and Participants’ Characteristics 

 

a-1. Participating Centers and Datasets: 

All participants included in this consortium were either recruited from reference neuro-

ophthalmology clinics or population-based studies. We selected participating centers from a large 

number of countries in order to obtain a representative set of fundus photographs of patients with 

a variety of optic nerve head disorders, occurring in a wide range of patient ethnicities and ages. 

This was essential in order to show the reproducibility of the deep learning system in geographically 

distinct populations.  Neuro-ophthalmologists routinely obtain fundus photographs on all patients 

with abnormal optic nerves and often on normal patients, similar to primary care physicians 

measuring blood pressure on nearly all patients, for example. Not all neuro-ophthalmologists do 

that and this is why we only included centers that routinely obtain fundus photographs on most 

patients (see list of centers in Supplementary Appendix 1 above). 

The BONSAI consortium collected raw data over 12 months. We utilized the first 19 

datasets gathered over the initial 9 months for training and validation of the deep learning 

system. Subsequently, the trained model was tested on 5 independent external testing 

datasets, provided by 5 additional neuro-ophthalmology centers with well-established clinical 

and imaging protocols for patients with optic disc abnormalities. These 5 external testing 

centers were chosen because of their comparable sizes (200-300 images), well-distributed 

diagnoses across each center, and the fact that they represented various ethnicities from 

different continents to confirm applicability and generalization of the deep learning system.  

As expected with a retrospective collection of fundus photographs from multiple 

centers, there is considerable variability in the proportion of abnormals and normals at each 

site. This is a result of the specific interests and expertise of each participating center. This 

should have no impact on the results of our study (see details section 2c below; technical 

aspects, handling class imbalance). 

  

a-2. Patient Selection and Inclusion Criteria (participating centers): 

The main inclusion criteria were fundus photographs of the optic discs and definite 

corresponding diagnoses clinically made by expert neuro-ophthalmologists in reference centers.  
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Some of the centers provided consecutive series of patients/photographs either 

obtained routinely in clinic (such as Emory, USA or Copenhagen, Denmark) or from previously 

generated large datasets of photographs (such as India and Singapore). Others provided 

previously collected samples of photographs for each of the optic nerve disorders based on 

their local practice and expertise in order to provide a variety of different optic nerve 

pathologies and normal optic nerves, and therefore could be considered “convenience 

samples”. However, such mix of samples should not be an issue for this specific study which 

is not about the relative percentages of normals and pathologies in the general population, 

but rather about teaching the deep learning system machine to recognize normals and 

various optic nerve pathologies. It was essential to gather a large number of well-defined 

high quality photographs of various optic nerve appearances correctly labelled with a definite 

corresponding diagnosis in order to train and validate the deep learning system.  

Reasons for not obtaining photographs included ocular disorders such as severe 

media opacities (cataracts, cornea scars, etc.), nystagmus and other abnormal eye 

movements precluding fundus photographs, inability for the patient to sit up, or lack of 

cooperation (cognitive impairment).  

 

Reference standard (ground truth): 

The deep learning system is trained to recognize features associated with the 

reference standard (or ground truth). For a diagnostic test, the definition of the reference 

standard is essential because it serves as the gold standard. This reference standard can be 

based on diagnoses provided by expert clinicians.1-4  

Each participating center included patients (and fundus photographs), based on strict 

inclusion criteria. Centers were asked to provide good quality fundus photographs that 

included the optic disc, obtained on patients with well-defined neuro-ophthalmic disorders 

including: 1) “papilledema” (defined as optic disc edema secondary to proven intracranial 

hypertension, including from an intracranial mass, hydrocephalus or cerebral venous 

thrombosis, detected on neuroimaging, or secondary to definite idiopathic intracranial 

hypertension, defined by the modified Dandy criteria with proven elevated cerebrospinal 

fluid opening pressure on lumbar puncture);5 2) “other optic disc abnormalities” including 

non-glaucomatous optic atrophy of any cause (compressive, ischemic, hereditary, chronic 

inflammatory optic neuropathies, etc.); optic disc edema secondary to acute anterior optic 

neuropathies (such as anterior ischemic optic neuropathies and inflammatory anterior optic 

neuropathies); optic nerve head drusen (buried drusen and non-buried drusen), and 
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congenitally anomalous optic nerves (pseudopapilledema, including tilted optic nerves, small 

crowded discs, myelinated nerve fibers, etc.).6,7 Photographs of optic disc drusen were 

included only if the diagnosis was firmly established by standard imaging criteria, such as B-

Ultrasound, optical coherence photography, or fundus autofluorescence photography.8 

Patients with unclear diagnosis, multiple ocular conditions, co-existent retinal conditions or 

glaucoma were not included. Centers were encouraged to submit photographs taken with 

various digital fundus cameras and with various fields, except for ultrawide field fundus 

cameras which are not appropriate for optic disc photographs.  

Each center was also asked to provide photographs of normal appearing optic nerve 

heads (obtained either in contralateral totally healthy eyes, or in individuals with no past or 

current history of ophthalmic diseases and no signs of optic neuropathy). Since ocular fundus 

photographs are not routinely performed in healthy individuals, we also included datasets 

from three centers of normal subjects with normal optic discs: 1) The center of Healthy 

Indians, from The Central India Eye and Medical Study, from which we randomly selected 

1911 curated normal optic discs;9  2) The Singapore Epidemiology of Eye Disease (SEED) Study 

from which we randomly selected 4053 normal Asian subjects with curated normal optic 

discs;10 3) A group of 330 normal subjects with normal optic discs from France  (largely white 

subjects) [unpublished]. 

 

a-3. Inclusion and exclusion of photographs (by the Singapore principal site): 

Non-inclusion and exclusion of images: 

Of a total of 17,470 photographs received from all centers by the Singapore Center, 1,471 

photographs were not included in the study because of deficient or incomplete data (see flow charts 

figure S2), and 153 photographs were excluded because of insufficient quality.  

Upon receiving each batch of photographs from each participating center, DM and CV (from 

the Singapore Center) reviewed all data in detail prior to any analysis and verified that all 

photographs were correctly matched to a specific patient and that no duplicative images were 

included for each patient. Additionally, specific attention was paid to the final diagnosis (reference 

standard or ground truth) provided for each image. In doing so, DM and CV excluded duplicate 

images (for example, a patient with papilledema who had photographs taken at multiple visits 

showing similar degrees of papilledema) and those of patients who developed secondary optic 

atrophy from chronic papilledema and had photographs of optic atrophy provided instead of just 

papilledema. When the final diagnosis did not seem definite, the images were not included (for 

example, a patient with bilateral optic disc swelling, characterized by the site principal investigator 
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as “papilledema”, but without available objective evidence of raised intracranial pressure measured 

by lumbar puncture,5 or evidence of an intracranial mass by neuroimaging. Another example is the 

category “optic disc drusen” sometimes diagnosed based on clinical criteria alone, without firm 

diagnostic evidence on ancillary investigations.6,8 By applying these stringent inclusion criteria, we 

secured a valid and robust reference standard, which is of paramount importance for the training of 

the deep learning system (to avoid the “garbage in, garbage out” problem).  

The second group of non-included images was due to data entry mislabelling on the Excel 

spreadsheet, which made it impossible to match the fundus photograph with the corresponding 

clinical entry in the Excel template. These images were not usable and were not included. 

Finally, 153 photographs (121 in the training datasets and 32 in the external testing datasets) 

were excluded from the study because of poor image quality that would have resulted in ungradable 

images, or poor centration of the disc with margins cut at the edge of the photograph. This quality 

analysis was initially performed manually by CV and DM for a few centers (Atlanta, Angers, Chennai, 

Freiburg). Soon after, our team developed a procedure able to perform a fully automated quality 

analysis by a dedicated quality algorithm. This algorithm is able to automatically exclude images with 

suboptimal quality or incorrect anatomic location resulting in undetectable optic discs prior to 

automatic cropping of the image and analysis by the diagnostic algorithm (see below in c), Technical 

Aspects). Indeed, it is expected that fundus photographs will be non-analysable by the deep learning 

system if the quality is poor (such as unfocused image, blurry image, major artefacts, eyelash 

artefacts) or if the image is eccentric, resulting in incomplete visualization of the optic disc. 

Automated identification of these ungradable or non-analysable photographs by the system prior to 

analysis is an important step when using any real-life ophthalmic imaging system, as it should 

prompt repeat fundus photographs and ophthalmology consultation if no photographs of good 

quality are available. Such quality algorithms are already available and used for the screening of 

diabetic retinopathy using artificial intelligence in a commercially available fundus camera.1  

 

Inclusion of images and demographics 

The remaining 15,846 fundus photographs (7,532 patients, mean (95%CI) age, 48.6 (48.2-

49.1) years; age-range, 3 to 98 years; 43.4% men) were used for the training, validation and testing 

of our deep learning system. The demographic distribution of patients included in the training and 

external testing datasets is described in Table S2.The majority of our patients (5346/7532, 71%) had 

photographs taken of each optic disc (both eyes); 18% (1327) had a unilateral optic disc photograph, 

and 11% (859) had multiple photographs during their follow-up, explaining why the total number of 

patients included in the study is less than the number of photographs analysed. 
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Uni- or bilaterality of optic nerve diseases: 

The artificial intelligence-deep learning system was trained and tested to detect optic disc 

abnormalities on the eye level (looking at only one eye) and not on the patient level (looking at one 

patient’s pair of eyes). The results of the optic nerve appearance in the fellow eye was not provided 

to the machine. Of course, the reference standard clinical diagnosis of each optic nerve disorder 

took the fellow eye into consideration because the diagnosis was made at the patient level (taking 

into account the appearance of both optic nerves for each patient). Some patients had bilateral 

abnormal optic nerves (such as those with bilateral papilledema or bilateral anterior optic neuritis), 

whereas some patients had one abnormal optic nerve and one normal optic nerve (such as those 

with anterior ischemic optic neuropathy or unilateral optic neuritis). For some of these patients, the 

investigator provided a photograph only of the abnormal optic nerve. Additionally, some patients 

had an ocular problem in one eye which precluded good quality photographs from being taken (such 

as when there was a previous ocular trauma, or cataract). This discrepancy has no impact on our 

study since our algorithm was trained to identify optic nerve abnormalities at the eye level 

independent of any clinical information and independent of any findings in the fellow eye. In fact, 

this is an essential strength of our deep learning system because optic nerve abnormalities may be 

unilateral or bilateral regardless of the underlying pathology. 

 

 

b) List of Digital Retinal Cameras Used in Each Participating Center 

A variety of retinal cameras were used to capture ocular fundus photographs in order to ensure that 

our deep learning system could be used on photographs obtained with many different digital retinal 

cameras (see list of cameras in Table S1). Wide-field digital cameras were not used as they are not 

appropriate for optic nerve imaging. 

 

 

c) Model Development: Technical Aspects 

c-1. Definition of artificial intelligence, machine learning and deep learning:1-4,11,12 

i. Artificial Intelligence (AI) refers to a software that can mimic cognitive functions such as learning 

and problem solving by processing and recognizing patterns in large amounts of data. 

ii. Machine learning creates its own algorithms by “learning” the associations between the input 

and the output, either in a supervised or un-supervised manner. Supervised learning is defined 
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as training a model with input data and its corresponding labels; unsupervised learning is 

training a model to identify patterns within the input data without the use of labels. 

iii. Deep learning utilizes multiple processing layers to learn representation of data with multiple 

levels of abstraction. Deep learning approaches use complete images, and associate the entire 

image with a diagnostic output, thereby eliminating the use of “hand-engineered” image 

features. 

As is usually done in machine learning, data is split into two major sets: 1) training and 

validation datasets, and 2) external testing datasets.1-4 These datasets must not intersect; an image 

that is in one of the datasets (e.g., training) must not be used in any of the other datasets (e.g., 

testing). In order to build a robust deep learning system, it is important to have two main 

components – the ‘dictionary’ (the datasets) and the ‘brain’ (deep neural network – Convolutional 

Neural Network [CNN]). For training and validation, the deep learning system requires a large 

training dataset consisting of images (in our study, fundus photographs showing the optic disc 

matched with a specific diagnosis provided by expert neuro-ophthalmologists), and selection of a 

convolutional neural network. Most of the dataset is used for training and validation, followed by 

external testing, with no overlap of the same data and images in any phases to avoid images from 

the same patient being used in the training and testing phases. It is preferable to use several 

independent external testing datasets. The definition of training, validation and external testing 

datasets are explained below. 

 

c-2. Definition of training, validation and external testing datasets: 1-4 

i. Training dataset: Training of deep neural networks is generally done in batches (subsets) 

randomly sampled from the training dataset. The training dataset is what is used for 

optimizing the network weights via backpropagation. Training is performed by updating the 

model parameters repeatedly until the model optimally fits the data. 

ii. Validation dataset: Validation is used for parameter selection and tuning and is customarily 

also used to implement stopping conditions for training.  

iii. External testing dataset: Finally, it is important to evaluate the classification performance of 

the artificial intelligence system using independent datasets, captured using different 

cameras, populations and clinical settings. This will ensure the generalizability of the system 

in clinical settings.  

 

c-3. Definition of a convolutional neural network: 
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A convolutional neural network (CNN) is a deep learning algorithm commonly applied to 

analyse visual data (images).1-4,13 It can take in an input image, assign importance (learnable weights 

and loss function) to various aspects/objects in the image and is able to differentiate one 

aspect/object from another. With training, CNNs have the ability to learn these filters/characteristics. 

The architecture of a convolutional neural network is analogous to that of the connectivity pattern of 

neurons in the human brain and resembles the biological processes of the visual cortex. 

Individual cortical neurons respond to stimuli only in a restricted region of the visual field known as 

the receptive field. The receptive fields of different neurons partially overlap such that they cover 

the entire visual field. CNNs take advantage of the hierarchical pattern in data and assemble more 

complex patterns using smaller and simpler patterns. The term “convolutional neural network” 

indicates that the network employs a mathematical operation called convolution to transform the 

input volume into an output volume by passing the information from layer to layer similar to what 

happens in the visual cortex. CNNs use relatively little pre-processing compared to other image 

classification algorithms. This means that the network learns the filters that in traditional algorithms 

were hand-engineered. This independence from prior knowledge and human effort in feature design 

is a major advantage.1-4,13 

 

c-4. Development of a deep learning classification model of optic disc abnormalities: 

All technical training of the deep learning system was performed using a NVIDIA Geforce 

Titan Xp 12GB GDDR5X Graphic Processing Unit (GPU) with Keras and Tensorflow.   

 

Quality control algorithm: 

In our deep learning system, our automated segmentation algorithm first performs a quality 

check on the ocular fundus photograph to ensure the optic disc is adequately detected. This 

algorithm is able to detect the optic disc images with insufficient view of the optic disc due to 

incorrect field of view, or poor image quality secondary to media opacities, eye movement or poor 

focus. Specifically, this algorithm, trained using multiple convolutional neural networks, analyzes the 

optic disc size, shape, margins, color balance, exposure, brightness and sharpness, followed by 

automatic cropping of the optic disc image into a rectangular shape prior to the commencement of 

the classification task analysis.  

 

Optic disc segmentation: 

A pixel-level semantic image segmentation network (U-Net14-17) was used for the localization 

of the optic disc region. A total of 6370 fundus photographs were labelled with the optic disc region 

https://en.wikipedia.org/wiki/Cortical_neuron
https://en.wikipedia.org/wiki/Visual_field
https://en.wikipedia.org/wiki/Receptive_field
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Image_classification
https://en.wikipedia.org/wiki/Image_classification
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Feature_engineering
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masked at pixel level. The fundus photographs and the masks were used to train the segmentation 

network. The trained segmentation network was then applied to segment the optic disc region 

automatically. In order to reduce the number of neural network parameters, a lightweight U-Net 

inspired by MobileNetV218 and U-Net14was utilized for the segmentation network, which consisted 

of an encoder network and a decoder network. The encoder network consisted of 5 convolutional 

network layers. The decoder network used convolutional transpose for upsampling. A probability 

density map was produced as the segmentation output, which generated loss gradients for neuron 

weights updating along the back propagation path.  

 

Optic disc classification: 

Based on the optic disc location, identified by the segmentation network, three optic disc 

images of different sizes were cropped out for each image. Subsequently, standard data 

augmentation techniques were used (optic disc rotation, flipping, and random drop out on certain 

input regions), in order to further increase the number and variety of training samples. Of these 

three optic disc images, one optic disc has the same size as the segmentation result and the other 

two optic discs have a slightly smaller and larger size respectively.   

The input optic disc images (224x224 pixels) were trained first using two DenseNet13,19 

(DenseNet-121 and DenseNet-201) pre-trained on ImageNet20 images. Once the training was done, 

these two fine-tuned DenseNet were used for feature extractions on optic disc images. At the last 

convolutional layer of these two fine-tuned DenseNets, the feature vectors were fused into the fully-

connected neural network with a softmax layer to optimize the performance. During the training 

process, optic disc classification output was compared to the reference standard clinical 

classification provided by expert neuro-ophthalmologists. Discordant findings between the deep 

learning system and clinical classification was used as error signals to be back propagated, allowing 

the networks to adapt their neuron weights iteratively in order to reduce the error. This process was 

repeated for all training images until the network reached a satisfactory performance.  

The training started with multiple iterations with a batch size of 32 images, with the initial 

learning rate of 0.01 and stopped at 60 epochs. For each training iteration, a stochastic gradient 

descent algorithm was used to optimize a pre-defined loss function to train neuron weights via 

backpropagation17,21,22; at every epoch, the performance of the convolutional neural network (CNN) 

was assessed using the validation dataset. Based on 5-fold cross-validation results obtained on 

primary datasets, we adjusted thresholds to achieve sensitivities of at least 90% on the validation 

datasets.  



 17 

Subsequently, using the same thresholds, the diagnostic performance of the deep 

learning system was assessed on 5 independent external testing datasets for detection of the three 

classes: 1) normal; 2) papilledema; 3) other disc abnormalities. To report performance 

characteristics for this 3-class classification system, we employ the one-vs-rest strategy23 (e.g., 

normal vs all abnormal discs [including papilledema and other disc abnormalities]), and report the 

AUC, sensitivity, specificity and accuracy for the below 3 cases based on the outputs from our multi-

class deep learning system: 1) normal vs abnormal discs (including papilledema and others); 2) 

papilledema vs non-papilledema (including normal discs and other optic disc abnormalities) and; 3) 

other disc abnormalities vs normal and papilledema. We also calculated the multi-class AUC for the 5 

external testing datasets (see Table S3). A multi-class AUC provides an overall average performance 

of a system for the classification of multiple outcomes (3 outcomes in our study: normal optic discs, 

papilledema and other disc abnormalities). We computed the overall multi-class AUC by averaging 

all possible pairwise combinations of classes for each external testing site.24  

The overall performance of our multi-class classification model yielded AUCs over 0.93 that 

were within the range of the one vs rest strategy. 

 

Handling of class imbalance  

To ensure that the training, validation and testing of the system were not affected by 

variability in the number of cases and controls from each site, we performed the following:  

 First, we pooled the data received from 19 sites to generate a deep learning system training 

dataset with a large sample of optic disc images for each classification. This is a standard 

procedure in all artificial intelligence/deep learning studies. 

 Next, during the deep learning system training process, we further addressed the imbalance 

between abnormals and normals by performing data augmentation and setting weights to loss 

function. Data augmentation computationally modifies the input data during the training 

process to increase the effective data set size and improve both overfitting and data accuracy.   

We used weighted cross entropy as our loss function during model training with class weights as 

shown below to handle class imbalance.  

 

𝐿 = −(𝑤1𝑦1𝑙𝑜𝑔(𝑝1) + 𝑤2𝑦2𝑙𝑜𝑔(𝑝2) + 𝑤3𝑦3𝑙𝑜𝑔(𝑝3)) 

 

where 𝑤𝑖 is the class weight for class 𝑖, 𝑦𝑖  is the label for class 𝑖 using one-hot encoding, and  𝑝𝑖  

is the predicted probability for class 𝑖. The weight is calculated directly inverse proportional to 
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the number of samples in the corresponding class. It will put more weights to the loss function 

on the class that has less samples, and less weights on the class that has more samples.  

Both methods are also commonly used to correct for frequently occurring class imbalance in 

deep learning procedures.25 

 We then conducted a 5-fold cross validation on the training/validation datasets to ensure that 

the validation results we were observing were not simply obtained by chance. A 5-fold cross 

validation procedure entails running the experiment 5 times, each time with a random 20% 

sample acting as a “validation dataset”. This procedure reduces or even eliminates the risk of 

selection bias. Figure S1 shows the results obtained on each cross-validation dataset (n = 5) 

displaying the consistent performance of our trained deep learning system.  

The differences between the proportions of abnormals and normals in our external testing datasets 

were expected and are likely to happen in any real-life clinical setting. Considering that our deep 

learning system displayed a consistently high performance (AUC range: 0.85 to 0.99) in the 

independent 5 external testing centers, it is unlikely that the accuracy of our deep learning system 

was affected by the proportions of abnormals and normals at each site. 

 

 Hyperparameter tuning and cross-validation 

In this study we used cross-validation26,27 to determine the most suitable hyper-parameters 

for our final model by following the 3 steps below: 

Step 1: We performed the hyperparameter tuning for the learning rate, optimizer, batch 

size, and global pooling strategy.  

In order to evaluate the performance of each unique set of hyperparameters, we ran 5-fold 

cross-validation on the training dataset including training 5 separate models using the same set of 

hyperparameters, followed by the generation of the aggregated performance (area under curve, 

AUC) of the 5 models. The aggregated performance of the 5 models is used to evaluate the 

performance of the set of hyperparameters.  

Please find below for the range of tuning adopted for each hyperparameter: 

-For learning rate, the searching range was 0.001 to 0.05.  

-For optimizer, we evaluated stochastic gradient descent (SGD), Adam, RMSprop, Adagrad, 

Adadelta.  

-For batch size, the searching range was from 16 to 48.  

-For global pooling strategy, we evaluated global max pooling and the global average 

pooling.  
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Step 2:  Upon completion of the hyperparameter tuning, the final hyperparameters chosen 

were learning rate = 0.01, optimizer = SGD, batch size = 32, pooling = global average pooling. Using 

these hyperparameters, we report 5-fold cross-validation performance metrics (AUC, Sensitivity, 

Specificity and Accuracy) as in Table 2 in the manuscript.  

Step 3: Using the above-chosen hyperparameters, we re-trained the deep learning system 

using the entire training dataset and evaluated its diagnostic performance on the testing datasets. 

Results are reported in Table 3 in the manuscript. 

 

Rationale for using a combination of neural models 

We used a method called ensemble learning28-31 with feature fusion to combine decisions 

from two networks. Ensemble learning is a widely-used machine learning approach that has been 

shown to improve classification performance. We have also tested the performance of single neural 

network models separately (i.e., DenseNet 121 and DenseNet 201). As highlighted in Table S4, the 

combination of DenseNet 121 and DenseNet 201 allowed for a better overall classification 

performance of the DLS on the external testing dataset compared to a single network. 

 

Heatmap Generation 

In order to generate the heatmap, the classification activation map (CAM)32 was utilized to 

apply global average pooling on the last convolutional layer in the deep convolutional neural 

networks. The trained weights for each output from the global average pooling layer indicated the 

importance/relevance of each feature map from the last convolutional layer. The trained weights 

were then applied on the corresponding feature maps, which were superimposed on original optic 

disc images, thus creating class-discriminative visualization in the generated heatmap. 

 

 

d) Statistical and bootstrapping procedures 

d-1. Confidence interval estimation: 

Bootstrapping was used only to estimate 95% confidence intervals (CI) for the performance 

metrics of our classification results (i.e., AUC, sensitivity, specificity and accuracy). We applied n-out-

of-n bootstrap with replacement at patient level from our dataset. For each bootstrap sample, we 

calculated and reserved the performance metrics for that bootstrap sample. The bootstrap sampling 

was repeated for 2000 times. We then estimated the 95% CI by using the 2.5 and 97.5 percentiles of 

the empirical distribution of corresponding metrics. 
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d-2. Accuracy and predictive values calculations: 

Accuracy, representing the fraction of correct classifications performed by the deep learning 

system, was calculated as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Positive and negative predictive values for Table 3 of the manuscript and Figure S5 below 

were calculated using the sensitivity and specificity of the deep learning system, after taking into 

account the prevalence of each condition using the formulas below:  

 

𝑃𝑃𝑉 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
 

 

𝑁𝑃𝑉 =  
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × (1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) + (1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) × 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒
 

 

where, PPV is the positive predictive value and NPV is the negative predictive value. 
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3) SUPPLEMENTARY APPENDIX 3: ADDITIONAL ANALYSES 

 

a) Errors in Classification by the Deep Learning System 
 

The deep learning system misclassified a total of 177 fundus photographs in the external testing 

dataset. These photographs and corresponding clinical information were individually reviewed by 4 

expert neuro-ophthalmologists (DM, CV, VB, NJN) in order to understand these discrepancies. 

Figures S4A, S4B and S4C provide details regarding the subgroups of missed normal optic discs 

(80/616 eyes), missed other optic disc abnormalities (79/538 eyes) and missed papilledema 

(18/361). 

 

b) Labelling errors 

The four expert neuro-ophthalmologists met to individually review the 177 photographs that 

had been misclassified by the deep learning system. They identified 10 labelling errors and these 10 

photographs were subsequently relabelled and reclassified after contacting each site PI for clinical 

confirmation. The results of the re-classification are shown in Figures S4A, S4B and S4C. 

Subsequently, we retested the newly corrected testing dataset which resulted in an improved 

overall average AUC by a marginal 0.0077 ± 0.008 (from AUC = 0.941 to 0.948). 

Given these labelling errors, we subsequently asked each of the 5 external testing centers to 

individually re-validate the labelling of each of the 1505 photographs included in the study, without 

providing them the results of the classification obtained from the deep learning system. As a result 

of this procedure, 3 additional annotation errors (diagnoses assigned) were identified by 2 centers, 

all within the “other optic disc abnormalities” category. The relabelling of these 3 photographs’ 

diagnoses did not change their respective classification, which remained “other optic disc 

abnormalities”, and therefore did not alter our results.  

Taking into account all mislabelled images (10 identified by the 4 neuro-ophthalmologists and 

confirmed by providers + 3 subsequently detected by providers after annotation quality checking), 

only 0.9% (10/1505) of our testing dataset were mislabelled as regards to one of the 3 categories.  

 

c) Prevalence of abnormal conditions and predictive values of the deep 

learning system 

In order to address the influence of prevalence rates of the optic nerve diseases on predictive 

values, we reached out to our collaborators at each sampled testing site (Bangkok, Copenhagen, 
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Freiburg, Rochester and Teheran) and requested that they provide the prevalence of optic disc 

abnormalities and papilledema seen in their respective neuro-ophthalmology clinics (results in Table 

S6). Using these prevalence and the respective performance characteristics of our system, we 

calculated the predictive values for the classification of papilledema and other optic disc 

abnormalities at each testing site (Manuscript Table 3). We also provided the predictive values of 

our deep learning system to classify normal optic discs, discs with papilledema, and discs with other 

optic disc abnormalities across a range of prevalence values (Figure S5).  
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4) SUPPLEMENTARY APPENDIX 4: FIGURES 

 

Figure S1: Receiver operating characteristic curves and areas under the curves (AUC) of 

individual folds for the 5-fold cross-validation performed on the primary data-set. 

  

 

 

Figure S2: Flow chart showing the process for inclusion and exclusion of ocular fundus 

photographs. 

 

 

Figure S2A: Training datasets: 

 

15779 photographs received from the 19 sites for training datasets

14341 (90.9%) photographs included in the training dataset

370 photographs (2.3%) not included due to 
mislabeling of photograph

64 photographs (0.4%) not included because of more 
than one ocular pathology (for example papilledema 
and optic atrophy or associated retinal disease)

14462 photographs reviewed for quality 
control

883 photographs (5.6%) not included because of 
insufficient diagnostic certainty (insufficient 
documentation provided by site)

121 photographs  (8.3%) excluded
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Figure S2B: External testing datasets: 

 

 

 

 

 

Figure S3: Technical model with segmentation and classification networks 

 

 

 

 

 

 

 

1691 photographs received from the 5 sites for testing datasets

1505 (89%) photographs included in the testing dataset

25 photographs (1.5%) not included due to mislabeling 
of photograph

7 photographs (0.4%) not included because of more 
than one ocular pathology (for example papilledema 
and optic atrophy or associated retinal disease)

1537 photographs reviewed for quality 
control

122 photographs (7.2%) not included because of 
insufficient diagnostic certainty (insufficient 
documentation provided by site)

32 photographs  (2.1%) excluded

Segmentation task Classification task Heat Map Generation 
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Figure S4: Errors in classification by the deep learning system 

Figure S4A: Misclassification of “normal optic disc” by the deep learning system in the 

external testing datasets.  

 

The deep learning system 
identified 4 labeling errors, all 
were “other optic disc 
abnormalities”, erroneously 
labeled as “normal” in the 
original datasets. The deep 
learning system correctly 
classified 1 of the mislabeled 
images as “other optic disc 
abnormalities”, while the 
other 3 eyes were 
misclassified as papilledema 
by the system. 

 

*Among the 17 patients misclassified as “papilledema” by the system, 7 had small crowded optic 
discs and would likely have been misinterpreted as having mild optic disc edema on fundus 
photographs, even by expert neuro-ophthalmologists without clinical information. 

 
 

Figure S4B: Misclassification of “other optic disc abnormalities” by the deep learning 

system in the external testing datasets.  

 

The deep learning system 
identified 3 labeling errors, 
including 2 eyes with 
papilledema erroneously 
labeled as “other optic disc 
abnormalities” in the original 
dataset.  

 

*Among the 54 patients misclassified as “papilledema” by the system, 49 had either disc edema 
from another cause (e.g., anterior ischemic optic neuropathy or anterior optic neuritis) or congenital 
optic disc anomalies mimicking disc edema and would easily have been misinterpreted as having 
papilledema on fundus photographs, even by expert neuro-ophthalmologists without clinical 
information.  
Seven eyes with “other optic disc abnormalities” were classified as “normal” by the system, but their 
appearance was definitely abnormal on fundus photographs.  

616 eyes with “normal optic disc” 
in testing datasets

536 eyes (87%) correctly classified 
as “normal optic disc”

80 eyes (13%) incorrectly classified 
as abnormal optic disc

Review of these 80 eyes by 4 
expert neuro-ophthalmologists

Identified 4 labeling errors:
4 “other optic disc abnormality”
The DLS’s classification was correct 
for 1 out of 4, and misclassified the 
other 3 as papilledema 

Total of 76 eyes (12.3%) incorrectly 
classified as abnormal optic discs

54 misclassified as ”other optic disc 
abnormality”

5 poor quality photographs

17 misclassified as “papilledema”*

528 eyes with “other optic disc 
abnormality” in testing datasets

449 eyes (85%) correctly classified 
as “other optic disc abnormality”

79 eyes (15%) incorrectly classified 
as “normal optic disc” or 
“papilledema”

Review of these 79 eyes by 4 
expert neuro-ophthalmologists

Identified 3 labeling errors:
-2 papilledema
-1 normal optic disc
The DLS’s classification was correct

Total of 76 eyes (14.4%) incorrectly 
classified as “normal optic disc” or 
“papilledema”

5 poor quality photographs

17 misclassified as “normal optic 
disc”

54 misclassified as “papilledema”*
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Figure S4C: Misclassification of “papilledema” by the deep learning system in the 

external testing datasets.  

 

All papilledema eyes 
misclassified by the deep 
learning system were 
classified as “other optic 
disc abnormalities”, and 
none was classified as 
“normal”. One pair of eyes 
with severe papilledema on 
fundus photographs was 
misclassified as “other optic 
disc abnormalities” in both 
eyes. The other 13 
misclassified papilledema 
eyes had patient-matched 
fellow eyes correctly 
classified as “papilledema” 
by the system, confirming 
that no diagnostic error 
would have been made at 
the patient level.  

 

The 15/361 (4.1%) photographs with missed papilledema originated from Bangkok (2), Copenhagen 
(1), Freiburg (2), Rochester (3) and Teheran (7). 

 

 

 

 
 
  

361 eyes with “papilledema” in 
testing datasets

343 eyes (95%) correctly classified 
as “papilledema”

18 eyes (5%) with papilledema 
incorrectly classified as “other 
optic disc abnormality”

Review of these 18 eyes by 4 
expert neuro-ophthalmologists

Identified 3 labeling errors:
-2 other causes of disc edema
-1 optic atrophy
The DLS‘s classification was correct

Total of 15 eyes (4.1%) with 
missed papilledema

Analysis at the patient level (by 
pairs of eyes)

13/15 fellow eyes were correctly 
classified by DLS as “papilledema”

One pair of eyes (one patient) 
with missed papilledema, both 
eyes misclassified as “other”
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Figure S5: Predictive values of the deep learning system across a full prevalence range 

for the detection of normal discs, discs with papilledema and other optic disc 
abnormalities  

Predictive values of the deep learning system for the detection of normal discs (A), papilledema (B) 
and other optic disc abnormalities (C) across a full (0 – 100%) range of prevalence. Positive and 
negative predictive values were derived from the overall performance characteristics (sensitivity, 
specificity) of the deep learning system in the 5 external testing datasets originating from 5 different 
neuro-ophthalmology clinics. This figure does not include uncertainty estimates. 

 

 

Abbreviations: PPV: positive predictive value; NPV: negative predictive value 

 

 

 

 

 

  

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

ti
v
e
 v

a
lu

e
 (

%
)

Prevalence (%)

PPV NPV
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

ti
v
e
 v

a
lu

e
 (

%
)

Prevalence (%)

PPV NPV
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

ti
v
e
 v

a
lu

e
 (

%
)

Prevalence (%)

PPV NPV

A. C.NORMAL OTHER DISC ABNORMALITIESPAPILLEDEMAB.



 28 

Figure S6: Examples of fundus photographs and corresponding heatmaps 

Figure S6a: Examples of original (native) fundus photographs, cropped images centered 
on the optic disc and corresponding class activation maps (heatmaps)  

 

A- Normal optic disc in an Asian patient. Diagnostic prediction by the deep learning system: 
normal 99.99%, papilledema <0.01%, other <0.01%.  
 
B- Mild papilledema in an African-American patient. Diagnostic prediction by the deep 
learning system: papilledema 99.98%, normal 0.01%, other <0.01%.  
 
C- Severe papilledema in an African-American patient. Diagnostic prediction by the deep 
learning system: papilledema 99.99%, normal <0.01%, other <0.01%. 
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Figure S6b: Additional examples of fundus photographs and corresponding heatmaps 

Examples of normal and abnormal optic discs with original images as submitted by investigators (left 

column), cropped images for image analysis by the deep learning system (middle column), and 

corresponding heatmaps (right column). Photographs were obtained using various digital fundus 

cameras, with different magnification, on patients of various ethnicities and pigmentation. 
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5) SUPPLEMENTARY APPENDIX 5: TABLES 

 

Table S1: List of digital retinal cameras used in each participating center 

City, Country Camera brand Model 

Angers, France Topcon TRC-NW6S 

Atlanta, USA Topcon 50DX 

Baltimore, USA Zeiss FF4 

Bordeaux, France Zeiss VISUCAM 

Bangkok, Thailand Kowa WX3D 

Bologna, Italy Zeiss/Topcon VISUCAM 500/DRI OCT Triton 

Central India Zeiss FF450 

Coimbra, Portugal Topcon TRC-NW7SF Mark II 

Copenhagen, Denmark Topcon TRC 50DX and TRC NW8 

Chennai, India Zeiss FF450 Plus IR 

Freiburg, Germany Zeiss SF 420 

Lille, France Nidek AFC330 

Geneva, Switzerland Zeiss FF450 Plus 

Grenoble, France Topcon/Canon TRC NW6S/CR2 

Guangzhou, China Topcon/Zeiss TRC 50DX/FF450 Plus 

Hong Kong, China Topcon TRC 50DX 

London, UK Topcon/Canon TRC 50DX/CR2 

Manila, Philippines Zeiss/Meditec VISUCAM 500/NMFA 

Paris, France Canon CRDGI 

Rochester, USA Topcon TRC 50DX 

Sydney, Australia Zeiss VISUCAM 500 

Syracuse, USA Topcon/Zeiss TRC NW8/TRC NW400/FF 450 

Singapore, Singapore Topcon/Canon TRC 50DX/CR-Dgi 

Teheran, Iran Canon CR2 

 

 

  



32 
 

Table S2. Demographic distribution of patients from the training and external testing 

datasets. 
 

Some centers had minimal missing demographic data that could not be retrieved. The Baltimore 

center provided a completely de-identified convenience sample with accurate diagnoses but most 

demographic data could not be retrieved.   

City, Country 
Number of 
patients 

Age (95% CI), 
years 

Available 
age data, % 

Gender, 
% male 

Available 
gender data, % 

Primary training and validation datasets 

Angers, France 492 52.1 (50.0 - 54.2) 100 44.1 100 

Atlanta, USA 934 37.3 (36.2 - 38.4) 100 21.9 100 

Baltimore, USA 391 30.3 (26.5 - 34.1) 10.2 30.8 10.0 

Bologna, Italy 152 37.1 (34.6 - 39.6) 100 65.8 100 

Bordeaux, France 36 51.6 (45.4 - 57.8) 100 52.9 94.4 

Chennai, India 338 37.6 (36.0 - 39.1) 100 46.7 100 

Coimbra, Portugal 173 53.3 (50.5 - 56.1) 100 49.1 100 

Geneva, Switzerland 71 42.8 (38.0 - 47.6) 100 64.8 100 

Grenoble, France 171 45.9 (42.2 - 49.5) 98.8 50.9 98.8 

Guangzhou, China 58 54.1 (51.6 - 56.7) 100 55.2 100 

Hong Kong, China 394 58.2 (56.7 - 59.6) 100 37.8 100 

Lille, France 198 50.2 (47.9 - 52.6) 100 37.4 100 

London, UK 190 53 (50.0 - 56.1) 100 52.6 100 

Manila, Philippines 36 43.8 (37.7 - 49.8) 100 61.1 100 

Nagpur, India 521 46.6 (45.5 - 47.6) 100 49.4 99.4 

Paris, France 138 44.1 (41.5 - 46.7) 100 44.2 100 

Singapore, Singapore 2194 56.2 (55.8 - 56.7) 99.8 49.2 99.8 

Sydney, Australia 259 42.2 (39.9 - 44.4) 94.6 44.5 94.6 

Syracuse, USA 33 46.5 (39.4 - 53.7) 100 30.3 100 

External testing datasets      

Bangkok, Thailand 159 49.8 (47.1 - 52.5) 99.4 38.0 99.4 

Copenhagen, Denmark 101 39.7 (36.4 – 43.0) 100 25.7 100 

Freiburg, Germany 156 40.9 (37.4 - 44.5) 100 35.3 100 

Rochester, USA 148 47.9 (44.9 – 51.0) 100 35.4 99.3 

Teheran, Iran 189 42.6 (40.4 - 44.8) 99.5 48.9 99.5 

All centers 7532 48.6 (48.2 – 49.1) 95.0 43.4 94.9 
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Table S3: Multi-class AUC for the 5 external testing datasets and comparison with the 

range of AUCs for one-vs-rest strategy 
 

External test set 
Range of AUCs for one-vs-rest 
strategy* Multi-class AUC** 

Bangkok, Thailand 0.91 – 0.98 0.95 

Copenhagen, Denmark 0.91 – 0.98 0.95 

Freiburg, Germany 0.92 – 0.99 0.96 

Rochester, USA 0.94 – 0.98 0.96 

Teheran, Iran 0.85 – 0.98 0.92 

All centers 0.90 – 0.98 0.95 

 
*normal vs [papilledema and other disc abnormalities]; papilledema vs [normal and other disc abnormalities]; 
other disc abnormalities vs [papilledema and normal]. 
 
**Calculated according to Hand DJ, Till RJ. A Simple Generalisation of the Area Under the ROC Curve for 
Multiple Class Classification Problems. Machine Learning 2001;45(2):171–186.24 
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Table S4: Classification performance of single neural networks against a combination of 

two networks 

Table comparing the classification performance of single neural networks (DenseNet 121, DenseNet 

201) against a combination of the two networks. The combination of 2 networks yielded a higher 

classification performance, represented here by AUCs, compared to a single network approach. 

 

 
Average AUC over all external testing centers 

 
DenseNet121 DenseNet201 Both Networks 

Norm vs  Pap + Other 0.97 0.97 0.98 

Pap vs Other + Norm 0.95 0.95 0.96 

Other vs Norm +  Pap 0.88 0.89 0.90 
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Table S5: Classification performance of the deep learning system on the individual external testing datasets. 

One-vs rest 
classification 

City, Country 
Total 
No. 

Normal Papilledema Others 
AUC  
(95% CI) 

Sensitivity  
(95% CI), % 

Specificity  
(95% CI), % 

Accuracy  
(95% CI), % 

Norm vs Pap + 
Other 

Bangkok, 
Thailand 

319 177 38 104 0.98 (0.97 - 0.99) 94.9 (88.1 - 97.3) 90.8 (84.4 - 96.3) 93.1 (88.2 - 95.3) 

Pap vs Other + 
Norm 

Bangkok, 
Thailand 

319 177 38 104 0.96 (0.94 - 0.98) 94.7 (87.0 - 100) 84.3 (81.3 - 90.2) 85.6 (82.9 – 91.0) 

Other vs Norm 
+ Pap 

Bangkok, 
Thailand 

319 177 38 104 0.91 (0.87 - 0.94) 81.7 (73.3 - 89.7) 83.7 (78.4 - 89.4) 83.1 (79.0 - 87.9) 

          

Norm vs Pap + 
Other 

Copenhagen, 
Denmark 

200 90 47 63 0.96 (0.93 - 0.99) 81.1 (71.6 - 89.5) 97.3 (93.8 - 100) 90.0 (85.1 - 94.1) 

Pap vs Other + 
Norm 

Copenhagen, 
Denmark 

200 90 47 63 0.98 (0.96 - 0.99) 100 (100 - 100) 89.5 (82.4 - 94.8) 92.0 (86.5 – 96.0) 

Other vs Norm 
+ Pap 

Copenhagen, 
Denmark 

200 90 47 63 0.91 (0.86 - 0.96) 92.1 (85.5 - 98.2) 69.3 (60 - 77.2) 76.5 (69.0 - 82.8) 

          

Norm vs Pap + 
Other 

Freiburg, 
Germany 

328 98 92 138 0.99 (0.98 - 1) 90.8 (85 - 96.6) 96.1 (92.7 - 98.4) 94.5 (91.7 – 97.0) 

Pap vs Other + 
Norm 

Freiburg, 
Germany 

328 98 92 138 0.96 (0.94 - 0.98) 98.9 (96.5 - 100) 79.2 (72.4 - 85.0) 84.8 (79.3 – 89.0) 

Other vs Norm 
+ Pap 

Freiburg, 
Germany 

328 98 92 138 0.92 (0.89 - 0.96) 87 (80.5 - 93.1) 84.2 (78.3 - 89.4) 85.4 (81.1 - 89.5) 

          

Norm vs Pap + 
Other 

Rochester, 
USA 

284 92 95 97 0.96 (0.94 - 0.98) 80.4 (71.9 - 89.3) 95.8 (92.6 - 98.4) 90.8 (87.0 - 94.4) 

Pap vs Other + 
Norm 

Rochester, 
USA 

284 92 95 97 0.98 (0.96 - 0.99) 96.8 (93 - 100) 84.1 (78.7 - 89.8) 88.4 (84.5 - 92.5) 
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The average age of patients included in the external testing dataset was 44.4 years (95%CI: 43.1 – 45.8), based on 99.7% of available patient demographics. 
The male to female ratio in the testing dataset was 0.61 (38.0% men), based on 99.6% of available patient demographics. 
 
Abbreviations: AUC: area under the receiver operating characteristic curve; CI: confidence interval; Norm: Normal discs; Pap: Discs with papilledema; Other: all 
other optic disc abnormalities, including non-arteritic anterior ischemic optic neuropathy, optic atrophy, other causes of optic disc swelling,  optic disc drusen, 
congenital optic disc abnormalities, etc. No: number 

 

Other vs Norm 
+ Pap 

Rochester, 
USA 

284 92 95 97 0.94 (0.91 - 0.97) 94.8 (90.0 - 98.9) 72.2 (65.6 - 80.3) 79.9 (75.1 - 85.7) 

          

Norm vs Pap + 
Other 

Teheran,  
Iran 

374 156 88 130 0.98 (0.96 - 0.99) 87.8 (82.5 - 93.3) 95.9 (93.0 - 98.6) 92.5 (89.7 - 95.4) 

Pap vs Other + 
Norm 

Teheran,  
Iran 

374 156 88 130 0.93 (0.90 - 0.96) 92.0 (85.8 - 97.9) 83.6 (78.5 - 88.0) 85.6 (81.4 - 89.3) 

Other vs Norm 
+ Pap 

Teheran,  
Iran 

374 156 88 130 0.85 (0.79 - 0.89) 77.7 (69.2 - 85.2) 76.2 (69 - 82.3) 76.7 (71.4 - 81.4) 
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Table S6: Estimated prevalences of abnormal conditions at testing sites 

 
Estimated prevalence 

 

Center, 
Country 

Abnormal optic 
discs (n) 

Papilledema (n) 
Other optic disc 
abnormalities (n) 

Total number 
of patients 
per year 

Bangkok, 
Thailand 

72.2% (325) 8.9% (40) 63.3% (285) 450 

Copenhagen, 
Denmark 

17.9% (500) 3.6% (100) 14.3% (400) 2800 

Freiburg, 
Germany 

50% (2000) 10% (400) 40.0% (1600) 4000 

Rochester, 
USA 

50% (800) 17.2% (275) 32.8% (525) 1600 

Teheran, 
Iran 

40% (200) 8% (40) 32.0% (160) 500 

Average 
(range) 

46.0% (17.9 – 72.2%) 9.5% (3.6 – 17.2%) 36.5% (14.3 – 63.3%)  

 

 
 

  



38 
 

5- REFERENCES FOR SUPPLEMENTARY APPENDIX: 

 

1. Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina PM, Chiang MF, Schmetterer L, Pasquale 

LR, Bressler NM, Webster DR, Abramoff M, Wong TY. Deep learning in ophthalmology: The 

technical and clinical considerations. Prog Retin Eye Res. 2019; 72: 100759. 

2. Ting DSW, Lee AY, Wong TY. An ophthalmologist's guide to deciphering studies in artificial 

intelligence. Ophthalmology. 2019; 126: 1475-1479. 

3. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: users' guides to 

the medical literature. JAMA. 2019; 322: 1806-1816. 

4. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019; 380: 1347-

1358. 

5. Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome 

in adults and children. Neurology 2013; 81: 1159-65. 

6. Biousse V, Newman NJ. Diagnosis and clinical features of common optic neuropathies. Lancet 

Neurol 2016; 15: 1355-67. 

7. Biousse V, Newman NJ. Ischemic optic neuropathies. N Engl J Med 2015; 372: 2428-36. Erratum 

in: N Engl J Med 2015; 373: 2390. 

8. Gise R, Gaier ED, Heidary G. Diagnosis and imaging of optic nerve head drusen. Semin 

Ophthalmol 2019; 34: 256-63. 

9. Nangia V, Matin A, Bhojwani K, Kulkarni M, Yadav M, Jonas JB. Optic disc size in a population-

based study in central India: The Central India Eye and Medical Study (CIEMS). Acta Ophthalmol 

2008; 86: 103-4. 

10. Cheung N, Teo K, Zhao W, Wang JJ, Neelam K, Tan NYQ, Mitchell P, Cheng CY, Wong TY. 

Prevalence and associations of retinal emboli with ethnicity, stroke, and renal disease in a 

multiethnic asian population: The Singapore Epidemiology of Eye Disease Study. JAMA 

Ophthalmol 2017; 135: 1023-8 

11. Webb, S. Deep learning for biology. Nature 2018; 554: 555–7. 

12. Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect 

glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol 2019 Sep 12. doi: 

10.1001/jamaophthalmol.2019.3501. [Epub ahead of print] PubMed PMID: 31513266; PubMed 

Central PMCID: PMC6743057. 

13. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks, 

Conference on Computer Vision and Pattern Recognition, CVPR 2017. 



39 
 

14. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image 

segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 

Lecture Notes in Computer Science, vol. 9351. 2015. 

15. Cicek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning dense 

volumetric segmentation from sparse annotation, Medical Image Computing and Computer-

Assisted Intervention – MICCAI 20166 Lecture Notes in Computer Science, vol. 9901. 2016. 

16. Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell 

counting, detection, and morphometry. Nat Methods 2019; 16: 67–70.  

17. Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for 

automated cartilage and meniscus segmentation of knee MR imaging data to determine 

relaxometry and morphometry. Radiology 2018; 288: 177-85. 

18. Sandler M, Howard A, Zhu M, Zhmoginov A,  Chen LC. MobileNetV2: inverted residuals and 

linear bottlenecks, CVPR 2018. 

19. Zhou Q, Zhou Z, Chen C, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in 

dynamic enhanced MR images. Computers in Biology and Medicine 2019; 107: 47-57. 

20. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image 

database, Conference on Computer Vision and Pattern Recognition, CVPR 2009. 

21. Aggarwal SLP. Data augmentation in dermatology image recognition using machine learning, 

Skin Research Technology 2019 May 29. 

22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521, 436–44. 

23. Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach Learn Res. 2004; 5: 101–141. 

24. Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class 

classification problems. Machine Learning 2001; 45: 171–86 

25. Mateusz B, Atsuto M, and Maciej AM. A systematic study of the class imbalance problem in 

convolutional neural networks. Neural Networks, 2018; 106:249–259. 

26. Gareth J, Daniela W, Trevor H, Robert T. An introduction to statistical learning : with applications 

in R. New York: Springer 2013. 

27. Po-Hsuan CC, Yun L, Lily P. How to develop machine learning models for healthcare? Nature 

Materials 2019; 18: 410–414.  

28. Yang P, Yang YH, Zhou BB, Zomaya AY. A Review of ensemble methods in bioinformatics; 

Including stability of feature selection and ensemble feature selection methods. Current 

Bioinformatics. 2010; 5: 296-308. Available at (accessed on 12/16/2019): 

http://www.maths.usyd.edu.au/u/pengyi/publication/EnsembleBioinformatics-v6.pdf. 

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+L


40 
 

29. Boström H. Feature vs. classifier fusion for predictive data mining a case study in pesticide 

classification. 2007 10th International Conference on Information Fusion, Quebec, Que., 2007, 

pp. 1-7. 

30. Hansen LK, Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and 

Machine Intelligence. 1990; Vol 12, No. 10. 

31. Ashmita S, Shukla KK. Review on the architecture, algorithm and fusion strategies in ensemble 

learning. Internal J Computer Application. 2014; Vol 108, No. 8. 

32. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative 

localization. CVPR 2016: 2921-9. 

 


