1,774 research outputs found

    The mean-field theory for attraction between like-charged macromolecules

    Full text link
    A mean-field theory based on Gibbs-Bogoliubov inequality is constructed to study the interactions between two like-charged polyions. It is shown that contrary to the previously established paradigm, a properly constructed mean-field theory can quantitatively account for the attractive interactions between two like-charged rods.Comment: 5 pages, 2 figures, elsart.sty neede

    Wigner crystal model of counterion induced bundle formation of rod-like polyelectrolytes

    Full text link
    A simple electrostatic theory of condensation of rod-like polyelectrolytes under influence of polyvalent ions is proposed. It is based on the idea that Manning condensation of ions results in formation of the Wigner crystal on a background of a bundle of rods. It is shown that, depending on a single dimensionless parameter, this can be the densely packed three-dimensional Wigner crystal or the two-dimensional crystal on the rod surfaces. For DNA the location of charge on the spiral results in a model of the one-dimensional Wigner crystal. It is also argued that the Wigner crystal idea can be applied to self-assembly of other polyelectrolytes, for example, colloids and DNA-lipid complexes.Comment: 4 pages; typos corrected, references adde

    Intracellular consequences of SOS1 deficiency during salt stress

    Get PDF
    A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na+/H+-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1 mutant, atsos1-1, by confocal microscopy using ion-specific fluorophores and by quantitative RT-PCR. In addition to the higher accumulation of sodium ions, atsos1-1 showed inhibition of endocytosis, abnormalities in vacuolar shape and function, and changes in intracellular pH compared to the wild type in root tip cells under stress. Quantitative RT-PCR revealed a dramatically faster and higher induction of root-specific Ca2+ transporters, including several CAXs and CNGCs, and the drastic down-regulation of genes involved in pH-homeostasis and membrane potential maintenance. Differential regulation of genes for functions in intracellular protein trafficking in atsos1-1 was also observed. The results suggested roles of the SOS1 protein, in addition to its function as a Na+/H+ antiporter, whose disruption affected membrane traffic and vacuolar functions possibly by controlling pH homeostasis in root cells

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    Charge Fluctuations on Membrane Surfaces in Water

    Full text link
    We generalize the predictions for attractions between over-all neutral surfaces induced by charge fluctuations/correlations to non-uniform systems that include dielectric discontinuities, as is the case for mixed charged lipid membranes in an aqueous solution. We show that the induced interactions depend in a non-trivial way on the dielectric constants of membrane and water and show different scaling with distance depending on these properties. The generality of the calculations also allows us to predict under which dielectric conditions the interaction will change sign and become repulsive

    Chiral Structure of F-actin Bundle Formed by Multivalent Counterions?

    Full text link
    The mechanism of multivalent counterion-induced bundle formation by filamentous actin (F-actin) is studied using a coarse-grained model and molecular dynamics simulation. Real diameter size, helically ordered charge distribution and twist rigidity of F-actin are taken into account in our model. The attraction between parallel F-actins induced by multivalent counterions is studied in detail and it is found that the maximum attraction occurs between their closest charged domains. The model F-actins aggregate due to the like-charge attraction and form closely packed bundles. Counterions are mostly distributed in the narrowest gaps between neighboring F-actins inside the bundles and the channels between three adjacent F-actins correspond to low density of the counterions. Density of the counterions varies periodically with a wave length comparable to the separation between consecutive G-actin monomers along the actin polymers. Long-lived defects in the hexagonal order of F-actins in the bundles are observed that their number increases with increasing the bundles size. Combination of electrostatic interactions and twist rigidity has been found not to change the symmetry of F-actin helical conformation from the native 13/6 symmetry. Calculation of zero-temperature energy of hexagonally ordered model F-actins with the charge of the counterions distributed as columns of charge domains representing counterion charge density waves has shown that helical symmetries commensurate with the hexagonal lattice correspond to local minima of the energy of the system. The global minimum of energy corresponds to 24/11 symmetry with the columns of charge domains arranged in the narrowest gaps between the neighboring F-actins.Comment: 9 pages, 10 figures, Published online in Soft Matter journal: http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm07104

    Investigating the distance limit of a metal nanoparticle based spectroscopic ruler

    Get PDF
    Conventional FĂśrster resonance energy transfer (FRET) processes involving a pair of fluorophore and organic quencher are restricted to an upper distance limit of ~10 nm. The application of a metal nanoparticle as a quencher can overcome the distance barrier of the traditional FRET technique. However, no standard distance dependence of this resonance energy transfer (RET) process has been firmly established. We have investigated the nonradiative energy transfer process between an organic donor (fluorescein) and gold nanoparticle quencher connected by double stranded (ds) DNA. The quenching efficiency of the gold nanoparticle as a function of distance between the donor and acceptor was determined by time-resolved lifetime analyses of the donor. Our results showed a 1/d4 distance dependence for the RET process for longer distances (>10 nm) and 1/d6 distance dependence for shorter distances (<10 nm). Our results clearly indicate the applicability of metal nanoparticle based quenchers for studying systems that exceed the 10 nm FRET barrier

    Biotechnology for mechanisms that counteract salt stress in extremophile species: A genome-based view

    Get PDF
    Molecular genetics has confirmed older research and generated new insights into the ways how plants deal with adverse conditions. This body of research is now being used to interpret stress behavior of plants in new ways, and to add results from most recent genomics-based studies. The new knowledge now includes genome sequences of species that show extreme abiotic stress tolerances, which enables new strategies for applications through either molecular breeding or transgenic engineering. We will highlight some physiological features of the extremophile lifestyle, outline emerging features about halophytism based on genomics, and discuss conclusions about underlying mechanisms. Š 2012 Korean Society for Plant Biotechnology and Springer
    • …
    corecore