138 research outputs found
Traditional vs Gesture Based UAV Control
Abstract. The purpose of this investigation was to assess user preferences for controlling an autonomous system. A comparison using a virtual environment (VE) was made between a joystick based, game controller and a gesture-based system using the leap motion controller. Command functions included basic flight maneuvers and switching between the operator and drone view. Comparisons were made between the control approaches using a representative quadcopter drone. The VE was designed to minimize the cognitive loading and focus on the flight control. It is a physics-based flight simulator built in Unity3D. Participants first spend time familiarizing themselves with the basic controls and vehicle response to command inputs. They then engaged in search missions. Data was gathered on time spent performing tasks, and post test interviews were conducted to uncover user preferences. Results indicate that while th
A Change in the Dark Room: The Effects of Human Factors and Cognitive Loading Issues for NextGen TRACON Air Traffic Controllers
By 2020 all aircraft in United States airspace must use ADS-B (Automatic Dependent Surveillance-Broadcast) Out. This is a key component of the Next Generation (NextGen) Air Transportation System, which marks the first time all aircraft will be tracked continuously using satellites instead of ground-based radar. Standard Terminal Automation Replacement System (STARS) in the Terminal Radar Approach Control (TRACON) is a primary NextGen upgrade where digitized automation/information surrounds STARS controllers while controlling aircraft. Applying the SHELL model, the authors analyze human factors changes affecting TRACON controllers from pre-STARS technology through NextGen technologies on performance. Results of an informal survey of STARS controllers assessed cognitive processing issues and indicates the greatest concern is with movements to view other displays and added time to re-engage STARS
Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants
International audienceObjective. Zinc ions are essential for the formation of hexameric insulin and hormone crystallisation. Correspondingly, a non-synonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. Here, we describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. Research Design and Methods. Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection, or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles, were undertaken using standard protocols. Results. ZnT8(-/-) mice displayed age, sex and diet-dependent abnormalities in glucose tolerance, insulin secretion and body weight. Islets isolated from null mice had reduced granule zinc content, and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion and insulin crystal dissolution, as assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modelling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. Discussion and conclusions. ZnT8 is required for normal insulin crystallisation and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risk
Differential influences of environment and self-motion on place and grid cell firing
Place and grid cells in the hippocampal formation provide foundational representations of environmental location, and potentially of locations within conceptual spaces. Some accounts predict that environmental sensory information and self-motion are encoded in complementary representations, while other models suggest that both features combine to produce a single coherent representation. Here, we use virtual reality to dissociate visual environmental from physical motion inputs, while recording place and grid cells in mice navigating virtual open arenas. Place cell firing patterns predominantly reflect visual inputs, while grid cell activity reflects a greater influence of physical motion. Thus, even when recorded simultaneously, place and grid cell firing patterns differentially reflect environmental information (or ‘states’) and physical self-motion (or ‘transitions’), and need not be mutually coherent
The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates
Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio
Quantitative Comparison of Constitutive Promoters in Human ES cells
BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs
Gamma frequency entrainment attenuates amyloid load and modifies microglia
Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-β (Aβ)[subscript 1-40] and Aβ [subscript 1-42] isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aβ. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aβ[subscript 1-40] and Aβ[subscript 1-42] levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.National Institutes of Health (U.S.) (Grant 1R01EY023173)National Institutes of Health (U.S.) (Grant 1DP1NS087724)National Institutes of Health (U.S.) (Grant RF1AG047661)National Institutes of Health (U.S.) (Grant ROIGM104948
An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells
Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.P30 DK097512/DK/NIDDK NIH HHS/United States
UC4 DK104166/DK/NIDDK NIH HHS/United States
MR/P010695/1/MRC_/Medical Research Council/United Kingdompublished version, accepted version, submitted versio
- …