31 research outputs found

    Study of Interplanetary Magnetic Field with Ground State Alignment

    Full text link
    We demonstrate a new way of studying interplanetary magnetic field -- Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter's Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Pushing the volcanic explosivity index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kīlauea in 2008

    Get PDF
    Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema'uma'u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m³ (1 × 10⁴ to 8 × 10⁵ kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of "volcano tourists" visiting basaltic volcanoes
    corecore