16 research outputs found
Early genotype- and sex-dependent differences in the F344tgHD rat model for Huntington’s Disease
To this day, Huntington Disease (HD) is an uncurable disease with detrimental symptomatology leading to death within 10 - 15 years after diagnosis.
Despite ongoing efforts and promising new targets, current therapy focuses on mere alleviation of symptoms. Regarding interventional therapeutic approaches, the prodromal phase of HD is coming into focus, because severe neuropathological damage and distinguishable motor impairments are still absent but close monitoring allows for reliable detection of subtle changes in cognition and personality. Nonetheless, defining this phase and predicting its course is difficult.
Another open topic in HD research is the impact of sex on disease severity and progression. A comprehensive investigation of the impact of sex in HD patients is impeded through the genetic disparity and the non standardizable environment. The usage of animal models enables circumvention of these restrictions by high standardization of both genetic and environmental factors. However, a common malpractice in basic and preclinical research with animals, is the omission of sex as biological variable. Not only does this pose a neglection of the 3R principles, but it also weakens the translatability of results. In HD research, differences have been described between female and males in various rodent models, whenever sex was included as factor, making a clear separation of and control for sex obligate.
One of the few rat models for HD is the F344/HanSvh-Tg(tmHTT51CAG) (F344tgHD) model, with a truncated Htt construct comprising 51 CAG repeats. A comprehensive sex comparison of this model as well as in-depth analysis of potential gene-dosage (zygosity) effects at early age were still owing.
Hence, this study presents a comprehensive, longitudinal phenotyping with classical as well as automated behavioral assays in combination with investigation of molecular HD hallmarks, namely striatal medium spony neurons (MSN) loss, striatal volume reduction and presence of mutant HTT aggregates in female and male F344tgHD rats aged 1 to 8 months. Additionally, HTT most abundant interactor HAP40 protein level and distribution as well as its interplay with (m)HTT was investigated to determine its status quo in this HD model.
This study describes a prodromal-like phase in F344tgHD rats, where subtle behavioral impairments are already detectable before occurrence of striatal cell loss. Additionally, differences between female and male rats were observed beginning with middle age especially in the motor and the sensorimotor domains. Male individuals were generally less active, demonstrated different gait characteristics than females and displayed anxiety reduced behavior.
Investigation of HAP40 revealed ubiquitous expression on level of the striatum and an age dependent increase in male but not female animals. The animals’ genotype had no impact on protein levels or cellular distribution and no direct interaction between mHTT and HAP40 could be detected in the F344tgHD model.
Our findings confirm that the congenic F344tgHD line is of highest face-validity, with close resemblance of the human genetics, i.e., a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a subtle phenotype. By differentiation of the sexes regarding HD-related changes and by specifying the prodromal-like phase in this model, we pave the way for future treatment studies
Comprehensive phenotyping revealed transient startle response reduction and histopathological gadolinium localization to perineuronal nets after gadodiamide administration in rats
Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application
Endogenous mouse huntingtin is highly abundant in cranial nerve nuclei, co-aggregates to Abeta plaques and is induced in reactive astrocytes in a transgenic mouse model of Alzheimer’s disease
Pathogenic variants of the huntingtin (HTT) protein and their aggregation have been investigated in great detail in brains of Huntington’s disease patients and HTT-transgenic animals. However, little is known about the physiological brain region- and cell type-specific HTT expression pattern in wild type mice and a potential recruitment of endogenous HTT to other pathogenic protein aggregates such as amyloid plaques in cross seeding events. Employing a monoclonal anti-HTT antibody directed against the HTT mid-region and using brain tissue of three different mouse strains, we detected prominent immunoreactivity in a number of brain areas, particularly in cholinergic cranial nerve nuclei, while ubiquitous neuronal staining appeared faint. The region-specific distribution of endogenous HTT was found to be comparable in wild type rat and hamster brain. In human amyloid precursor protein transgenic Tg2576 mice with amyloid plaque pathology, similar neuronal HTT expression patterns and a distinct association of HTT with Abeta plaques were revealed by immunohistochemical double labelling. Additionally, the localization of HTT in reactive astrocytes was demonstrated for the first time in a transgenic Alzheimer’s disease animal model. Both, plaque association of HTT and occurrence in astrocytes appeared to be age-dependent. Astrocytic HTT gene and protein expression was confirmed in primary cultures by RT-qPCR and by immunocytochemistry. We provide the first detailed analysis of physiological HTT expression in rodent brain and, under pathological conditions, demonstrate HTT aggregation in proximity to Abeta plaques and Abeta-induced astrocytic expression of endogenous HTT in Tg2576 mice
Widespread pesticide distribution in the European atmosphere questions their degradability in air
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved
Widespread pesticide distribution in the European atmosphere questions their degradability in air
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved
Image_1_Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease.tiff
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1–8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease’s temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.</p
Image_4_Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease.TIFF
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1–8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease’s temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.</p
Image_5_Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease.TIFF
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1–8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease’s temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.</p
Table_1_Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease.pdf
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1–8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease’s temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.</p
Image_3_Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease.tiff
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1–8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease’s temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.</p