271 research outputs found

    Nonlinear theory for coalescing characteristics in multiphase Whitham modulation theory

    Get PDF
    The multiphase Whitham modulation equations with NN phases have 2N2N characteristics which may be of hyperbolic or elliptic type. In this paper a nonlinear theory is developed for coalescence, where two characteristics change from hyperbolic to elliptic via collision. Firstly, a linear theory develops the structure of colliding characteristics involving the topological sign of characteristics and multiple Jordan chains, and secondly a nonlinear modulation theory is developed for transitions. The nonlinear theory shows that coalescing characteristics morph the Whitham equations into an asymptotically valid geometric form of the two-way Boussinesq equation. That is, coalescing characteristics generate dispersion, nonlinearity and complex wave fields. For illustration, the theory is applied to coalescing characteristics associated with the modulation of two-phase travelling-wave solutions of coupled nonlinear Schr\"odinger equations, highlighting how collisions can be identified and the relevant dispersive dynamics constructed.Comment: 40 pages, 2 figure

    Born of Freedom and Dissent: A comparative analysis of American antiwar protest in the first 1,418 days of the Vietnam and Iraq wars

    Get PDF
    Cultural aesthetics are the latent effects of human relations informing cognitive schemas as cultural variations of social forms in specific time-space contexts. To understand what conditions produce intra-national conflict during wartime, engagement reactivity between social control mechanisms and antiwar protesters was measured. Hypothesis-1 showed high numbers of arrests were influenced by the type and duration of protest and military presence at protest events during Vietnam, whereas place and size of protest were influential during Iraq. Hypothesis-2 showed that where and how antiwar protests occur has changed. Hypothesis-3 showed that, compared to Vietnam, Iraq antiwar protest has increased initial reactivity-intensity, has more arrests and fewer injuries, and is 541.6% larger per event, with a 248.8% greater total number of protesters. This study concludes that structural flexibility and preparedness prevent intra-national conflict, the antiwar movement has become an institution, and the cultural schema for Vietnam antiwar protest has affected its present form

    On the Elliptic-Hyperbolic Transition in Whitham Modulation Theory

    Get PDF
    The dispersionless Whitham modulation equations in one space dimension and time are generically hyperbolic or elliptic and break down at the transition, which is a curve in the frequency-wavenumber plane. In this paper, the modulation theory is reformulated with a slow phase and different scalings resulting in a phase modulation equation near the singular curves which is a geometric form of the two-way Boussinesq equation. This equation is universal in the same sense as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multiperiodic, quasi-periodic, and multipulse localized solutions. This theory shows that the elliptic-hyperbolic transition is a rich source of complex behavior in nonlinear wave fields. There are several examples of these transition curves in the literature to which the theory applies. For illustration the theory is applied to the complex nonlinear Klein--Gordon equation which has two singular curves in the manifold of periodic traveling waves

    Double criticality and the two-way Boussinesq equation in stratified shallow water hydrodynamics

    Get PDF
    Double criticality and its nonlinear implications are considered for stratified N–layer shallow water flows with N = 1,  2,  3. Double criticality arises when the linearization of the steady problem about a uniform flow has a double zero eigenvalue. We find that there are two types of double criticality: non-semisimple (one eigenvector and one generalized eigenvector) and semi-simple (two independent eigenvectors). Using a multiple scales argument, dictated by the type of singularity, it is shown that the weakly nonlinear problem near double criticality is governed by a two-way Boussinesq equation (non-semisimple case) and a coupled Korteweg-de Vries equation (semisimple case). Parameter values and reduced equations are constructed for the examples of two-layer and three-layer stratified shallow water hydrodynamics

    Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation

    Get PDF
    Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically

    Reduction to modified KdV and its KP-like generalization via phase modulation

    Get PDF
    The main observation of this paper is that the modified Korteweg-de Vries equation has its natural origin in phase modulation of a basic state such as a periodic travelling wave, or more generally, a family of relative equilibria. Extension to 2 + 1 suggests that a modified Kadomtsev-Petviashvili (or a Konopelchenko-Dubrovsky) equation should emerge, but our result shows that there is an additional term which has gone heretofore unnoticed. Thus, through the novel application of phase modulation a new equation appears as the 2 + 1 extension to a previously known one. To demonstrate the theory it is applied to the cubic-quintic nonlinear Schrödinger (CQNLS) equation, showing that there are relevant parameter values where a modified KP equation bifurcates from periodic travelling wave solutions of the 2 + 1 CQNLS equation

    Antitrust and Competition Law Update: New European Licensing Rules Require Fresh Assessment of Existing and New Intellectual Property Licenses

    Get PDF
    As of 1 May 2004, many licensors and licensees of patents, know-how and computer software in Europe will need to step up their efforts to ensure that they comply with European competition law. Companies without significant market power will enjoy greater flexibility than in the past to tailor licenses to their particular needs. But companies which license competitors or which have market power need to review their market position and licenses more carefully and more frequently

    Phase dynamics of periodic waves leading to the Kadomtsev–Petviashvili equation in 3+1 dimensions

    Get PDF
    The Kadomstev–Petviashvili (KP) equation is a well-known modulation equation normally derived by starting with the trivial state and an appropriate dispersion relation. In this paper, it is shown that the KP equation is also the relevant modulation equation for bifurcation from periodic travelling waves when the wave action flux has a critical point. Moreover, the emergent KP equation arises in a universal form, with the coefficients determined by the components of the conservation of wave action. The theory is derived for a general class of partial differential equations generated by a Lagrangian using phase modulation. The theory extends to any space dimension and time, but the emphasis in the paper is on the case of 3+1. Motivated by light bullets and quantum vortex dynamics, the theory is illustrated by showing how defocusing NLS in 3+1 bifurcates to KP in 3+1 at criticality. The generalization to N>3 is also discussed

    Reduction to modified KdV and its KP-like generalization via phase modulation

    Get PDF
    The main observation of this paper is that the modified Korteweg–de Vries equation has its natural origin in phase modulation of a basic state such as a periodic travelling wave, or more generally, a family of relative equilibria. Extension to 2  +  1 suggests that a modified Kadomtsev–Petviashvili (or a Konopelchenko–Dubrovsky) equation should emerge, but our result shows that there is an additional term which has gone heretofore unnoticed. Thus, through the novel application of phase modulation a new equation appears as the 2  +  1 extension to a previously known one. To demonstrate the theory it is applied to the cubic-quintic nonlinear Schrödinger (CQNLS) equation, showing that there are relevant parameter values where a modified KP equation bifurcates from periodic travelling wave solutions of the 2  +  1 CQNLS equation
    corecore