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The Kadomstev–Petviashvili (KP) equation is a well-
known modulation equation normally derived by
starting with the trivial state and an appropriate
dispersion relation. In this paper, it is shown that the
KP equation is also the relevant modulation equation
for bifurcation from periodic travelling waves when the
wave action flux has a critical point. Moreover, the
emergent KP equation arises in a universal form, with
the coefficients determined by the components of the
conservation of wave action. The theory is derived
for a general class of partial differential equations
generated by a Lagrangian using phase modulation.
The theory extends to any space dimension and
time, but the emphasis in the paper is on the case
of 3 + 1. Motivated by light bullets and quantum
vortex dynamics, the theory is illustrated by showing
how defocusing NLS in 3 + 1 bifurcates to KP in
3 + 1 at criticality. The generalization to N> 3 is also
discussed.

1. Introduction
The Kadomstev–Petviashvili (KP) equation in 3 + 1 can
be scaled so that it takes the form

(ut + uux + uxxx)x = ±uyy ± uzz, (1.1)

and in N + 1 with N> 3 one just adds additional
second derivative terms for each new space dimension
on the right-hand side. The case N = 2 is the classical
KP equation first derived in [1]. There has been a
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vast amount of work on 2 + 1 KP and a review can be found in Biondini & Pelinovsky [2]. The
3 + 1 KP has been much less studied. It first appeared in the paper of Kuznetsov & Turitsyn [3],
where they study the transverse instability of 2 + 1 lump solitary waves in the 3 + 1 KP equation,
showing that they are unstable. Further work, including further detail on the instability of lumps
in 2 + 1 → 3 + 1, as well as direct numerical simulation, is reported in Senatorski & Infeld [4] and
Infeld et al. [5] (see also Infeld & Rowlands [6]). A range of exact solutions of 3 + 1 KP have been
discovered (e.g. Ma [7] and references therein).

The interest in this paper is not in solutions or structure of 3 + 1 KP. The contribution of this
paper is threefold. We show how and why the KP equation (in any dimension) arises, without
recourse to a dispersion relation. The key assumption is that the wave action flux (with the
number of components dependent on dimension) has a critical point in wavenumber space.
Secondly, it is shown that it is the relevant modulation equation for periodic travelling waves with
critical wave action flux. Indeed, it would be quite complicated to construct the dispersion relation
in general for the linearization about a family of periodic travelling waves, yet the approach
based on criticality of the wave action flux is straightforward. Thirdly, we are able to predict the
coefficients without recourse to any specific equation, they just follow from the structure of the
Lagrangian, and the conservation of wave action. This latter aspect of the theory is reminiscent of
Whitham modulation theory (e.g. ch. 14 of [8]), but here the modulation generates dispersion.

We assume that the partial differential equations of interest are generated by a Lagrangian

L (Z) =
∫∫∫∫

L(Z, Zt, Zx, Zy, Zz) dx dy dz dt, (1.2)

for vector-valued Z(x, y, z, t). The Lagrangian (1.2) is for the 3 + 1 case but has obvious extension
to higher space dimension.

Suppose there exists a periodic travelling wave solution of the Euler–Lagrange equation

Z(x, y, z, t) = Ẑ(θ ), Ẑ(θ + 2π ) = Ẑ(θ ), θ = kx + my + �z + ωt + θ0, (1.3)

where θ0 is an arbitrary phase shift, ω is the frequency and k := (k, m, �) is the wavenumber vector.
We assume existence and smoothness of this family of periodic travelling waves.

The form of the emergent KP equation arises by a phase modulation argument. First, the
frequency and wavenumber are made explicit in the basic state: replace (1.3) by Ẑ(θ , k, m, �,ω),
and then introduce a modulation of the phase as well as all parameters

Z(x, y, z, t) = Ẑ(θ + εφ, k + ε2q, m + ε3r, �+ ε3s,ω + ε4Ω) + ε3W(θ , X, Y, Z, T), (1.4)

where φ, q, r, s,Ω are all functions of X, Y, Z, T, ε. Although the combination of scales in (1.4) looks
strange, it is in fact naturally dictated by the conservation of waves, coupled with the scalings (1.11).
Recall the classical way to define the local wavenumber and frequency for a given phase

θx = k and θt =ω,

leading to the classical conservation of waves for consistency as

kt − ωx = 0. (1.5)

By now relating the wavenumber and frequency modulation to derivatives of the phase using the
new slow variables, the conservation of waves gives

qT =ΩX qY = rX qZ = sX,

rT =ΩY rZ = sY

and sT =ΩZ.

⎫⎪⎪⎬
⎪⎪⎭ (1.6)

Each term in (1.4) is scaled so that all the terms in (1.6) are in balance. The conservation of waves
(1.6) is a generalization of the 2 + 1 conservation of waves on p. 502–503 of [8].

The expression (1.4) is an ansatz. The strategy is just to substitute (1.4) into the Euler–Lagrange
equation associated with (1.2), expand everything in powers of ε and equate terms of each order
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to zero. We find that the governing equations are satisfied exactly up to fifth order in ε if and only
if q satisfies (1.10).

This strategy of ‘phase dynamics’ goes back to Whitham (e.g. ch. 14 of [8]) and the Whitham
modulation theory, which was based on a Lagrangian. An inspiration for this work was the
reduction theory of Doelman et al. [9] which suggested modulating parameters as well as the
phase, but that theory involved reduction of reaction–diffusion equations. The theory came full
circle in the work of Bridges [10,11] where modulating parameters and new scaling was included
in the Lagrangian setting giving a new approach to modulation in the conservative setting. This
theory led to a new universal form for the codimension one (only one assumption needed)
emergence of the KdV equation. In [11], the KP-II equation in 2 + 1 is derived using phase
modulation around steady solutions of the water-wave problem. An introduction to modulation
in the conservative setting is given in [12].

It follows from the Whitham theory that the Lagrangian has a conservation law for wave action
[8, ch. 11 and 14], which we write as

At + div(B) = 0, (1.7)

where A is the wave action, and B := (B, C, D) is the wave action flux vector. The (A, B, C, D) in
roman are the components of the conservation law considered as functions of Z(x, y, z, t). In the
subsequent theory, it is these components evaluated on the basic state that are important. Define the
wave action evaluated on the basic state (1.3) as

A (ω, k, m, �) = Lω, (1.8)

where L here is the Lagrangian averaged over the phase of the basic state (1.3). There are similar
definitions for B, C and D . The main result of this paper is that with the assumption

Bk = Ck = Dk = 0, (1.9)

the perturbation (1.4) of the periodic travelling wave (1.3) satisfies the 3 + 1 KP equation

((Ak + Bω)qT + BkkqqX + K qXXX)X + CmqYY + D�qZZ = 0 (1.10)

to leading order in ε (where ε is a small parameter to be defined). In this equation, T, X, Y and Z
are slow time and space scales

X = εx, Y = ε2y, Z = ε2z and T = ε3t. (1.11)

In order to generate further second-order derivatives on the right-hand side of (1.10) the
additional space dimensions would also have slow versions of order ε2. In (1.10), the dependent
variable q(X, Y, Z, T, ε) arises as a modulation of the x-direction wavenumber k. The assumption
Bk = 0 generates the nonlinearity qqX, and the assumptions Ck = Dk = 0 assure that the right-hand
side of (1.10) contains dispersion terms consisting of second derivatives.

The remarkable feature of the 3 + 1 KP in (1.10) is that the coefficients other than K are
determined by derivatives of the components of the wave action conservation law, evaluated
on the basic state. In particular, the coefficients of transverse dispersion Cm and D� are completely
determined by properties of the family of periodic travelling waves. The equation is universal
in the sense that it does not rely on properties of a particular equation, it just follows from the
Lagrangian structure and the conservation of wave action. The parameter K is the odd one. It is
also a dispersion parameter but it arises due to a symplectic Jordan chain theory argument.

The strategy of this paper—introduce an ansatz, substitute into the Euler–Lagrange equation,
derive exact equations up to fifth order and show that the coefficients are determined by a
conservation law—is similar to [10] and so we will be brief, highlighting those features that are
new and different. Indeed, the first three terms in (1.10) are the same as in [10]. The two key new
features are the form of the transverse dispersion, and the fact that the reduction in the N + 1 case
is codimension N (e.g. (1.9)). Although we will show that the codimension can be reduced when
the system has a transverse reflection symmetry.
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Our principal example is the reduction of the 3 + 1 defocusing nonlinear Schrödinger (NLS)
equation to the 3 + 1 KP equation. The defocusing NLS in 3 + 1 has solitary wave solutions
that are known as bullets due to their localized form in three space dimensions and they have
attracted recent interest [13]. Although normally found in NLS with variable coefficients, the
3 + 1 KP has localized solutions that are similar to bullets [5], capturing a reduction of the three-
dimensional localized solutions in defocusing NLS [14]. Another motivation for studying 3 + 1
NLS is quantum vortices (cf. Kerr [15] and references therein). In §8, we show how the theory
in this paper gives immediately the coefficients in the 3 + 1 KP derived from 3 + 1 NLS. This
reduction generalizes the reduction of NLS in 2 + 1 to KP-I (e.g. [16–18]).

An outline of the paper is as follows. The Lagrangian set-up, including structure of the
Lagrangian, averaging, linearization and the conservation of wave action are introduced in §§2
and 3. Sections 4–6 give details of the modulation expansion and ordering of terms. When the
system has a transverse reflection symmetry, the codimension of the emergence of KP is reduced
by each such symmetry. The argument behind this is sketched in §7. The calculations giving rise
to the reduction from 3 + 1 NLS to 3 + 1 KP are given in §8. In §9, the extension to any space
dimension N> 3 is outlined.

2. From Lagrangian to multisymplectic Hamiltonian
It is easier to proceed with the theory when the Lagrangian has structure. The strategy is
to transform the Lagrangian density to a multisymplectic Hamiltonian density [19,20]. In this
formulation, the conservation of wave action is given a geometric formulation [21] with a direct
link to the equations.

The transformation from Lagrangian to multisymplectic Hamiltonian is effectively a multiple
Legendre transform. Start with the Lagrangian formulation for some PDE

L L(U) =
∫∫∫∫

L(Ut, Ux, Uy, Uz, U) dx dy dz dt, (2.1)

where U(x, y, z, t) is in general vector valued. Legendre transform V = δL/δUt, giving a
Hamiltonian formulation

L H(W) =
∫∫∫∫ [

1
2
〈MWt, W〉 − H(Wx, Wy, Wz, W)

]
dx dy dz dt, (2.2)

with new coordinates W = (U, V), and 〈·, ·〉 an appropriate inner product, with M and H defined
by Legendre transform. The density is still the same Lagrangian density with new coordinates.
The advantage is that it has been split into two parts: a Hamiltonian function H(Wx, Wy, Wz, W)
which is scalar valued, and a part defined by a symplectic operator M, which for the purposes of
this paper can be taken to be a constant skew-symmetric matrix.

Now continue to Legendre transform the Hamiltonian function in each space direction,
resulting in a multisymplectic Hamiltonian formulation

L (Z) =
∫∫∫∫ [

1
2
〈MZt, Z〉 + 1

2
〈JZx, Z〉 + 1

2
〈KZy, Z〉 + 1

2
〈PZz, Z〉 − S(Z)

]
dx dy dz dt, (2.3)

with new coordinates Z(x, y, z, t), and 〈·, ·〉 an appropriate inner product. The density is again the
same Lagrangian density in terms of the new coordinates, but now it is split into N + 2 parts,
where N is the space dimension: a new Hamiltonian function S(Z) which does not contain any
derivatives with respect to t, x, y, z and N + 1 symplectic structures represented by the skew-
symmetric matrices M, J, K, P. The principal advantage of the multisymplectic structure is that
the symplectic structures appear both in the equations and in the conservation of wave action,
giving an explicit connection for the modulation theory.

The above sequence of Legendre transforms is schematic, as in general non-degeneracy
conditions are required, and each PDE has to be treated with care. An example of the above
sequence of Legendre transforms is given in §8.
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3. Euler–Lagrange equations and modulation
The starting point for the theory is the Euler–Lagrange equation associated with the Lagrangian
(2.3)

MZt + JZx + KZy + PZz = ∇S(Z), Z ∈ R
n, (3.1)

for some n ≥ 4. Here, S : R
n → R is the Hamiltonian function, M, J, K, P are constant skew

symmetric matrices,
MT = −M, JT = −J, KT = −K, PT = −P.

We also assume the existence of a family of periodic travelling wave solutions parametrized by
their wavenumbers k, m, � and frequency ω,

Z(x, y, z, t) = Ẑ(θ , k, m, �,ω), θ = kx + my + �z + ωt + θ0

for some constant phase shift θ0. Periodicity requires Ẑ(θ + 2π , k, m, �,ω) = Ẑ(θ , k, m, �,ω). The
travelling wave solution satisfies

(ωM + kJ + mK + �P)Ẑθ = ∇S(Ẑ), (3.2)

where the variable subscript denotes differentiation.
The modulation ansatz is given in (1.4). The strategy is to substitute this modulation ansatz

into the governing equations and equate like powers of ε to zero. First, preliminary results on the
derivatives of the basic state and their connection with wave action conservation are established.

(a) Averaging the Lagrangian and wave action
To get the components of the conservation law for wave action, average (2.3), evaluated on the
family of travelling waves, over θ ,

L (ω, k, m, �) = 1
2π

∫ 2π

0

[
ω

2
〈MẐθ , Ẑ〉 + k

2
〈JẐθ , Ẑ〉 + m

2
〈KẐθ , Ẑ〉 + �

2
〈PẐθ , Ẑ〉 − S(Ẑ)

]
dθ ,

and differentiate with respect to ω, k, m, �, giving

A (ω, k, m, �) = Lω = 1
2
〈〈MẐθ , Ẑ〉〉,

B(ω, k, m, �) = Lk = 1
2
〈〈JẐθ , Ẑ〉〉,

C (ω, k, m, �) = Lm = 1
2
〈〈KẐθ , Ẑ〉〉

and D(ω, k, m, �) = L� = 1
2
〈〈PẐθ , Ẑ〉〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where 〈〈·, ·〉〉 is the inner product averaged over θ ,

〈〈U, V〉〉 := 1
2π

∫ 2π

0
〈U, V〉 dθ . (3.4)

Note that the structure matrices M, J, K, P appear both in the Euler–Lagrange equations, (3.1) and
in the components of the conservation law (3.3).

The derivatives in (1.9) are

Bk = 〈〈JẐθ , Ẑk〉〉, Ck = 〈〈KẐθ , Ẑk〉〉 and Dk = 〈〈PẐθ , Ẑk〉〉. (3.5)

The coefficient of the time derivative is

Ak = 〈〈MẐθ , Ẑk〉〉 = 〈〈JẐθ , Ẑω〉〉 = Bω, (3.6)

with equality following from Ak = Lωk = Lkω = Bω. Similar cross derivatives exist for the other
components of wave action, which are useful for simplifying the modulation theory.
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We will also need the second k derivative of B,

Bkk = 〈〈JẐθ , Ẑkk〉〉 + 〈〈JẐθk, Ẑk〉〉, (3.7)

as well as the derivatives

Cm = 〈〈KẐθ , Ẑm〉〉 and D� = 〈〈PẐθ , Ẑ�〉〉. (3.8)

(b) Linearization about the periodic basic state
Define the linear operator

Lf =
[

D2S(Ẑ) − kJ
d
dθ

− �K
d

dθ
− mP

d
dθ

− ωM
d

dθ

]
f , (3.9)

obtained by linearizing (3.2). Then differentiating (3.2) with respect to θ and k,

D2S(Ẑ)Ẑθ = kJẐθθ + ωMẐθθ ,

D2S(Ẑ)Ẑk = kJẐθk + ωMẐθk + JẐθ

or
LẐθ = 0 and LẐk = JẐθ . (3.10)

Other equations of interest in the modulation theory are the differentiation of (3.2) with respect to
ω, m, � which give

LẐω = MẐθ , LẐ� = KẐθ and LẐm = PẐθ . (3.11)

The first equation of (3.10) shows that Ẑθ is in the Kernel of L. It is natural to assume that the
kernel is no larger. Hence assume

Kernel(L) = span{Ẑθ }. (3.12)

The second equation of (3.10) shows that there is a non-trivial Jordan chain associated with the
zero eigenvalue of L with geometric eigenvector Ẑθ . This Jordan chain is discussed in §5.

For inhomogeneous equations that arise in the modulation theory and the Jordan chain theory,
a solvability condition will be needed. With the assumption (3.12) and the symmetry of L, the
solvability condition for the inhomogeneous equation LW = F is

LW = F is solvable if and only if 〈〈Ẑθ , F〉〉 = 0. (3.13)

4. Details of the modulation expansion
The aim is to expand the modulation ansatz (1.4) in powers of ε, transform the derivatives using
the chain rule, and then solve the equations at each order in ε. The small parameter ε is a measure
of the distance in k space from criticality. Let k0 be a value of k satisfying Bk = 0 then k − k0 = ε2q
with q of order one. Taylor expanding the modulation of the basic state, we can write

Ẑ(θ + εφ, k + ε2q, m + ε3r, �+ ε3s,ω + ε4Ω) =
5∑

n=0

εnZn + O(ε6)

with

Z0 = Ẑ(θ , k, m,ω), Z1 = φẐθ , Z2 = 1
2φ

2Ẑθθ + qẐk,

Z3 = 1
6φ

3Ẑθθθ + qφẐθk + rẐm + sẐ�,

Z4 = 1
24φ

4Ẑθθθθ + 1
2 qφ2Ẑθθk + 1

2 q2Ẑkk + φrẐθm + φsẐθ� +ΩẐω,

Z5 = 1
120φ

5Ẑθθθθθ + 1
6 qφ3Ẑθθθk + 1

2 q2φẐθkk + 1
2φ

2rẐθθm + 1
2φ

2sẐθθ�

+ qrẐkm + qsẐk� +ΩφẐθω,
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with each term in the expansion evaluated at θ , k, m, �. Expand the remainder term W as well

W = W0 + εW1 + ε2W2 + O(ε3).

The full expansions of the terms appearing in the governing equations are lengthy and are
therefore just a summary of the key steps is presented.

The zeroth-order equation is just the equation for the basic state recovering (3.2). The first-
order equation gives φLẐθ which is satisfied exactly due to (3.10). The second-order equation just
recovers the definition q = φX.

(a) Third-order terms
At third order, terms proportional to φ3 and qφ can be shown to vanish identically. For example,
the terms proportional to φ3 are

1
6φ

3(D4S(Ẑ)(Ẑθ , Ẑθ , Ẑθ ) + 3D3S(Ẑ)(Ẑθ , Ẑθθ ) + L0Ẑθθθ ),

which is identically zero, and can be seen by differentiation of (3.2) three times with respect to θ .
The qφ terms vanish under a similar argument. This leaves

(r − φY)LẐm + (s − φZ)LẐ� + LW0 − qXJẐk = 0. (4.1)

The first two terms vanish by construction since r = φY and s = φZ. Then this system is considered
solvable if

〈〈Ẑθ , JẐk〉〉 = −〈〈JẐθ , Ẑk〉〉 = −Bk = 0, (4.2)

and so we require that B is extremal in k in order to continue with the asymptotic analysis. This
solvability condition confirms the first necessary condition in (1.9). The solution for W0 is then

W0 = α(X, Y, Z, T)Ẑθ + qXξ3, (4.3)

for some arbitrary function α, and where ξ3 is defined through the relation

Lξ3 = JẐk. (4.4)

This equation is solvable under the condition Bk = 0.

5. Interlude: Jordan chains
A Jordan chain of length J, {ξ1, . . . , ξJ}, for a zero eigenvalue in the symplectic setting is defined
by

Lξ1 = 0 and Lξi = Jξi−1, i = 2, . . . , J. (5.1)

When J is invertible then this chain is a classical Jordan chain. However, in this case, J may not be
invertible. Hence we include the assumption

ξi /∈ Ker(J), i = 1, . . . , J, (5.2)

which appears to be satisfied in examples.
Here we are interested in the Jordan chain associated with the geometric eigenvector ξ1 = Ẑθ .

As shown in (3.10), the Jordan chain associated with Ẑθ has length at least two since ξ2 = Ẑk. In
fact, it has length at least three due to (4.4). It has length four if Lξ4 = Jξ3 and this equation is



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150137

...................................................

solvable if and only if
〈〈Ẑθ , Jξ3〉〉 = 0. (5.3)

However,

〈〈Ẑθ , Jξ3〉〉 = −〈〈JẐθ , ξ3〉〉 = −〈〈LẐk, ξ3〉〉
= −〈〈Ẑk, Lξ3〉〉 = −〈〈Ẑk, JẐk〉〉 = 0, (5.4)

with the last equality due to skew symmetry of J. Hence the Jordan chain has length at least four.
There is no fifth element if

〈〈ξ1, Jξ4〉〉 �= 0. (5.5)

Assume this condition is satisfied and define

K = 〈〈Jξ1, ξ4〉〉 �= 0. (5.6)

It is precisely this coefficient that arises in the modulation theory to give the coefficient of
dispersion in the x-direction.

6. Terms of order four and five in the expansion
At fourth-order, the equation simplifies to

(Ω − φT)LẐω + L(W1 − αXẐk − αφẐθθ ) − qY(JẐm + KẐk)

− qZ(JẐ� + PẐk) + qXφ(D3S(Ẑ)(Ẑθ , ξ3) − JẐθk) − qXXJξ3 = 0, (6.1)

where simplifications have been introduced to account for terms that vanish identically, and the
identities, qY = rX and qZ = sX, from the conservation of waves have been used.

Note that the first term vanishes if Ω = φT, a similar enforcement to the previous orders. The
term prefactored by qXφ can be shown to be the result of L(ξ3)θ since if we differentiate its defining
equation (4.4) with respect to θ ,

D2S(Ẑ)(ξ3)θ + D3S(Ẑ)(Ẑθ , ξ3) − (ωM + kJ + mK)(ξ3)θ = JẐθk

⇒ L(ξ3)θ = JẐθk − D3S(Ẑ)(Ẑθ , ξ3).

What can we do about that qY term? Checking solvability:

〈〈Ẑθ , JẐm + KẐk〉〉 = −〈〈JẐθ , Ẑm〉〉 + 〈〈Ẑθ , KẐk〉〉
= −〈〈LẐk, Ẑm〉〉 + 〈〈Ẑθ , KẐk〉〉 = −〈〈Ẑk, LẐm〉〉 + 〈〈Ẑθ , KẐk〉〉
= −〈〈Ẑk, KẐθ 〉〉 + 〈〈Ẑθ , KẐk〉〉 = 2〈〈Ẑθ , KẐk〉〉 = −2Ck.

Thus, it is only solvable if
Ck = 0. (6.2)

The second component of the wave action flux C needs to be extremal with respect to k to
continue. Similarly, to solve for the qZ term, we consider its inner product:

〈〈Ẑθ , JẐ� + PẐk〉〉 = −〈〈JẐθ , Ẑ�〉〉 − 〈〈PẐθ , Ẑk〉〉
= −〈〈LẐk, Ẑ�〉〉 − 〈〈PẐθ , Ẑk〉〉 = −〈〈Ẑk, LẐ�〉〉 − 〈〈PẐθ , Ẑk〉〉
= −〈〈Ẑk, PẐθ 〉〉 − 〈〈PẐθ , Ẑk〉〉 = −2〈〈PẐθ , Ẑk〉〉 = −2Dk.

So we also need k extremality in D in order to continue. Overall, the resulting solution for W1 at
this order is

W1 = αXẐk + αφẐθθ + β(X, Y, T)Ẑθ + qXφ(ξ3)θ + qYη + qZζ + qXXξ4, (6.3)

with
Lη= JẐm + KẐk, Lζ = JẐ� + PẐk, (6.4)
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which are solvable when Ck = Dk = 0. By cross differentiation of the Lagrangian, these two
conditions are equivalent to imposing that Bm = Bl = 0 and naturally leads to equivalent
conditions to (1.9) for the KP to emerge.

(a) Fifth-order terms
After a few simplifications at this final order, we have the equation

L(W2 − αXXξ3 − (αXφ + αq)Ẑθk − αYẐm − 1
2φ

2αẐθθθ − βXẐk

− βφẐθθ − 1
2 qXφ

2(ξ3)θθ − qYφ(η)θ − qXX(ξ4)θ ) − αZẐ� − qZ(ζ )θ )

− qT(MẐk + JẐω) − qqX(JẐkk + J(ξ3)θ − D3S(Ẑ)(Ẑk, ξ3))

− rYKẐm − pZPẐ� − qXXXJξ4 = 0. (6.5)

Terms that are now acted on by the linear operator can be shown to simplify this way by similar
reasoning used at the previous orders. We now take the inner product of the above. The first term
outside of the linear operator yields

〈〈Ẑθ , MẐk + JẐω〉〉 = 〈〈Ẑθ , MẐk〉〉 + 〈〈Ẑθ , JẐω)〉〉 = −〈〈MẐθ , Ẑk〉〉 − 〈〈JẐθ , Ẑω〉〉 = −Ak − Bω = −2Ak.
(6.6)

The last one is simply
〈〈Ẑθ , Jξ4〉〉 = −K .

The rY coefficient is also simple to evaluate and gives the result

〈〈Ẑθ , KẐm〉〉 = −〈〈KẐθ , Ẑm〉〉 = −Cm. (6.7)

For the hydrodynamic term, we start with the definition of Bkk to show that

Bkk = 〈〈JẐθ , Ẑkk〉〉 + 〈〈JẐθk, Ẑk〉〉 = 〈〈JẐθ , Ẑkk〉〉 − 〈〈Ẑθk, JẐk〉〉
= 〈〈JẐθ , Ẑkk〉〉 − 〈〈Ẑθk, Lξ3〉〉 = 〈〈JẐθ , Ẑkk〉〉 − 〈〈LẐθk, ξ3〉〉
= 〈〈JẐθ , Ẑkk〉〉 − 〈〈JẐθθ − D3S(Ẑ)(Ẑk, Ẑθ ), ξ3〉〉
= −〈〈Ẑθ , JẐkk〉〉 − 〈〈JẐθθ , ξ3〉〉 + 〈〈D3S(Ẑ)(Ẑk, Ẑθ ), ξ3〉〉
= −〈〈Ẑθ , JẐkk〉〉 − 〈〈Ẑθ , J(ξ3)θ 〉〉 + 〈〈Ẑθ , D3S(Ẑ)(Ẑk, ξ3)〉〉. (6.8)

This reveals that the hydrodynamic term is the negative curvature of B with respect to the first
wavenumber. The last to compute is the coefficient of the pZ term. Via calculation:

〈〈Ẑθ , PẐ�〉〉 = −〈〈PẐθ , Ẑ�〉〉 = −D�. (6.9)

Therefore, solvability requires that

2AkqT + BkkqqX + K qXXX + CmrY + D�pZ = 0. (6.10)

Taking the X derivative of this equation gives (1.10) and thus the 3 + 1 KP equation governs the
dynamics of the perturbation at fifth order.

The qqX bracket in the above appears to be the k derivative of the ξ3 equation,

D3S(Ẑ)(Ẑk, ξ3) + D2S(Ẑ)(ξ3)k − (ωM + kJ + mK)(ξ3)θk − J(ξ3)θ = JẐkk

⇒ L(ξ3)k = JẐkk + J(ξ3)θ − D3S(Ẑ)(Ẑk, ξ3). (6.11)

This would appear to imply that the coefficient of the hydrodynamic term, qqX, vanishes
identically. However, the k derivative for this vector does not necessarily exist: ξ3 only exists for
specific values of the wavenumber, defined by Bk = 0, and so ξ3 is not necessarily differentiable
and so the coefficient of qqX is, generically, non-zero.
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(b) Reduction to the 2 + 1 case
The most widely studied case of the KP equation is the 2 + 1 case [2]. The theory here reduces
immediately to that case by restricting the original PDE to have coordinates (x, y, t) only. The
3 + 1 KP reduces to this case by neglecting Z-dependence giving

(2AkqT + BkkqqX + K qXXX)X + CmqYY = 0.

Even in this special case the theory points to new results. The typical derivation of the KP equation
in 2 + 1 is relative to the trivial state, and the theory here shows how the 2 + 1 KP equation can
arise relative to a non-trivial periodic travelling wave. Hence it points towards new applications
of the KP equation.

One of the most well-known contexts for the appearance of the 2 + 1 KP equation as a model
equation is in the theory of water waves. A special case of the modulation approach was used
in Bridges [11] to give a new derivation of the KP-II equation in shallow water, and showed the
connection between the coefficients and the properties of classical uniform flows. The theory of
this paper suggests that the KP equation may also appear as a modulation equation in water
waves in the perturbation about non-trivial periodic travelling waves.

7. Implications of a transverse reflection symmetry
One of the curiosities of the emergence of the KP equation is that it is codimension N where N − 1
is the number of transverse space directions (meaning that N conditions (1.9) are necessary for
emergence). On the other hand, the KdV equation is codimension 1, requiring only the condition
Bk = 0 [10], and the KP equation should be just as prevalent, that is, also codimension 1.

This contradiction is rectified by noting that when the governing equations have a transverse
reflection symmetry in the y-direction then the condition Cm = 0 is automatically satisfied when
m = 0. Similarly when there is a transverse reflection symmetry in the z-direction then the
condition D� = 0 is automatically satisfied when �= 0. In this section, this argument is sketched
for the case of a y-direction reflection symmetry. A similar argument works in any transverse
direction.

The implication of a reflection symmetry for the solution set is that Z(x, −y, z, t) is a solution
whenever Z(x, y, z, t) is a solution. This reflection symmetry will also arise in some form in the
functions A (ω, k, m, �) and B(ω, k, m, �). In fact, we will show that an implication of transverse
y-reflection is the following property:

A (ω, k, −m, �) = A (ω, k, m, �), B(ω, k, −m, �) = B(ω, k, m, �),

C (ω, k, −m, �) = −C (ω, k, m, �) and D(ω, k, −m, �) = D(ω, k, m, �).

}
(7.1)

Hence, A , B and D are even functions of m and C is an odd function of m.
A system in multisymplectic form (3.1), is transverse reversible in the y-direction if there exists a

reversor R acting on R
n satisfying

RM = MR, RJ = JR, RK = −KR, RP = PR and S(RZ) = S(Z). (7.2)

An operator R is a reversor if it is an involution and an isometry.
Act on (3.1) with R,

RMZt + RJZx + RKZy + RPZz = R∇S(Z),

and use (7.2),

M(RZ)t + J(RZ)x − K(RZ)y + P(RZ)z = ∇S(RZ).

An immediate implication is that RZ(x, −y, z, t) is a solution of (3.1) whenever Z(x, y, z, t) is a
solution.
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We will verify the third of (7.1) as it is the most important with the verification of the others
following a similar argument. Start with the definition

C (ω, k, m, �) = 1
2π

∫ 2π

0

1
2
〈KẐθ , Ẑ〉 dθ , (7.3)

with Ẑ(θ ,ω, k, m, �) satisfying (3.2). Act on this equation with R and use (7.2) to establish that

RẐ(θ ,ω, k, m, �) = Ẑ(θ ,ω, k, −m, �). (7.4)

Now, use this identity in (7.3),

C (ω, k, −m, �) = 1
2π

∫ 2π

0

1
2
〈K d

dθ
Ẑ(θ ,ω, k, −m, �), Ẑ(θ ,ω, k, −m, �)〉 dθ

= 1
2π

∫ 2π

0

1
2
〈K d

dθ
RẐ(θ ,ω, k, m, �), RẐ(θ ,ω, k, m, �)〉 dθ

= − 1
2π

∫ 2π

0

1
2
〈RK

d
dθ

Ẑ(θ ,ω, k, m, �), RẐ(θ ,ω, k, m, �)〉 dθ

= − 1
2π

∫ 2π

0

1
2
〈K d

dθ
Ẑ(θ ,ω, k, m, �), Ẑ(θ ,ω, k, m, �)〉 dθ

= −C (ω, k, m, �),

since RK = −KR and R is an isometry. This completes the verification of the third identity in
(7.1), with the others verified in a similar manner. The fact that C is an odd function of m gives
immediately

Ck|m=0 = 0.

In other words, the emergence of KP has the same codimension as KdV in systems with a
transverse symmetry, obtained by just using a basic state aligned with the x-direction. The
example of NLS in 3 + 1 in the next section has a reflection symmetry in all transverse directions.

8. Example: 3 + 1 nonlinear Schrödinger equation
Consider the defocusing NLS equation in 3 + 1 in standard form

iψt + ψxx + ψyy + ψzz + ψ − |ψ |2ψ = 0, (8.1)

for the complex-valued function ψ(x, y, z, t). This system is a basis for the discussion of quantum
vortices [15]. Separate the equation into real and imaginary parts by letting ψ = a1 + ia2, giving

−∂a2

∂t
+ ∂2a1

∂x2 + ∂2a1

∂y2 + ∂2a1

∂z2 + a1 − (a2
1 + a2

2)a1 = 0

and
∂a1

∂t
+ ∂2a2

∂x2 + ∂2a2

∂y2 + ∂2a2

∂z2 + a2 − (a2
1 + a2

2)a2 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.2)

These two equations are the Euler–Lagrange equation associated with the Lagrangian

L(a, ax, ay, az, at) =1
2

(
a1
∂a2

∂t
− a2

∂a1

∂t
+
(
∂a1

∂x

)2
+
(
∂a1

∂y

)2

+
(
∂a1

∂z

)2
+
(
∂a2

∂x

)2
+
(
∂a2

∂y

)2
+
(
∂a2

∂z

)2

−(a2
1 + a2

2) + 1
2

(a2
1 + a2

2)2
)

. (8.3)
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The multisymplectic form of the equations is obtained by taking sequential Legendre transforms

b = ∂L
∂ax

= ax, c = ∂L
∂ay

= ay and d = ∂L
∂az

= az,

where a = (a1, a2)T. This then allows us to write the Lagrangian for this system in the form of (3.1)
with

Z =

⎛
⎜⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎟⎠ M =

⎛
⎜⎜⎜⎝

σ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , J =

⎛
⎜⎜⎜⎝

0 −I 0 0
I 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

K =

⎛
⎜⎜⎜⎝

0 0 −I 0
0 0 0 0
I 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎝

0 0 0 −I
0 0 0 0
0 0 0 0
I 0 0 0

⎞
⎟⎟⎟⎠

and S(Z) = 1
2

(a · a + b · b + c · c + d · d) − 1
4

(a · a)2, σ =
(

0 −1
1 0

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.4)

The associated conservation law of the form (1.7) can be deduced from (8.1) with

A = 1
2 |ψ |2, B = 
(ψ∗ψx), C = 
(ψ∗ψy) and D = 
(ψ∗ψz), (8.5)

whereψ∗ denotes the complex conjugate ofψ and 
 denotes the imaginary part of the expression.
This conservation law can be verified by direct calculation using (8.1). The symbols (A, B, C, D)
represent the components of the conservation law as functions of ψ . For the modulation theory, it
is these components evaluated on the basic state that are important.

Consider a basic state of the form

ψ̂(θ , k, m, �,ω) =Ψ0 ei(kx+my+�z+ωt) =Ψ0 eiθ .

The vector Ẑ(θ , k, m, �,ω) is obtained by defining Ẑ = (a, kaθ , maθ , �aθ ) with a = (a1, a2) and a1 +
ia2 =Ψ0 eiθ . This state is an exact periodic travelling wave solution and substitution into the
governing equation gives

ω + k2 + m2 + �2 − 1 + |Ψ0|2 = 0, ⇒ |Ψ0|2 = 1 − ω − k2 − m2 − �2. (8.6)

To determine the derivatives for the necessary condition and the coefficients of the emergent KP
equation, substitute into the components of the conservation law, giving

A = 1
2 (1 − ω − k2 − m2 − �2), B = k(1 − ω − k2 − m2 − �2),

C = m(1 − ω − k2 − m2 − �2) and D = �(1 − ω − k2 − m2 − �2).

⎫⎬
⎭ (8.7)

These expressions can also be obtained using the method to derive (3.3), however in this case
it appears to be far simpler to extract the conservation law for the system directly and evaluate
along the basic state. Note that A , B, D are even functions of m and C is an odd function of m.
Similarly, A , B, C are even functions of � and D is an odd function of �. These symmetries are
due to the transverse reflection symmetry of 3 + 1 NLS in the y- and z-directions, respectively.
These symmetries follow from the theory in §7, or simply by noting that the y- and z-derivatives
in 3 + 1 NLS (8.1) are even.

Seeking k extremality in B, C , D gives the set of equations

1 − m2 − �2 − 3k2 − ω= 0, mk = 0, �k = 0. (8.8)

To avoid the trivial solution, k = 0, the second two conditions give m = �= 0. The first condition
then reduces to

k2 = 1
3 (1 − ω) with ω< 1.
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The derivatives of the conservation laws that appear in the emergent KP take the values

Ak = −k, Bkk = −6k, Cm = 2k2 and D� = 2k2. (8.9)

All that remains is to compute the x-direction dispersion coefficient K in order to be able to
construct the emergent KP equation. For this coefficient, the symplectic Jordan chain needs to be
constructed.

Express the Jordan chain elements in the form

ξi =

⎛
⎜⎜⎜⎝

Rθai
Rθbi
Rθci
Rθdi

⎞
⎟⎟⎟⎠ , j = 1 . . . 4, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
,

as well as the form for the state vector

Ẑ =

⎛
⎜⎜⎜⎝

Rθ û
kσRθ û
mσRθ û
�σRθ û

⎞
⎟⎟⎟⎠ ,

so that |û| = |Ψ0|. In the above, we have used that (d/dθ )Rθ = σRθ and the latter expression is
commutative. The sequence that produces the elements of the Jordan chain can be found to be

−2(aj · û)û = −bj−1 − kσaj−1,

bj = kσaj + aj−1,

cj = mσaj,

dj = �σaj.

Taking the initial vectors a0 = b0 = c0 = d0 = 0, then we find that

ξ1 =

⎛
⎜⎜⎜⎝

σRθ û
−kRθ û
−mRθ û
−�Rθ û

⎞
⎟⎟⎟⎠ , ξ2 = 1

2k

⎛
⎜⎜⎜⎝

−Rθ û
kσRθ û

−mσRθ û
−�σRθ û

⎞
⎟⎟⎟⎠ ,

ξ3 = − 1
2k

⎛
⎜⎜⎜⎝

0
Rθ û

0
0

⎞
⎟⎟⎟⎠ and ξ4 = − 1

8k3

⎛
⎜⎜⎜⎝

Rθ û
kσRθ û
mσRθ û
�σRθ û

⎞
⎟⎟⎟⎠.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.10)

This allows us to calculate K as

K = 〈〈Jξ1, ξ4〉〉 = − 1
2 . (8.11)

Therefore, the emergent KP equation for this problem is given by

(2kqT + 6kqqX + 1
2 qXXX)X − 2k2(qYY + qZZ) = 0 (8.12)

which is KP-I, with the transverse dispersion the same in the y- and z-directions. By scaling
q, X, Y, Z, T appropriately, the emergent KP equation (8.12) can be put into canonical form

(qT + qqX + qXXX)X − (qYY + qZZ) = 0. (8.13)

This equation has been studied by Senatorski & Infeld [4] and Infeld et al. [5] and localized solitary
waves in three space dimensions have been shown to form from perturbed exact two-dimensional
lump solitons.
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9. Emergence of Kadomstev–Petviashvili in N> 3 space dimensions
The emergence of KP follows from two key structural properties: the multisymplectic form of the
Euler–Lagrange equation (3.1), and the conservation of wave action in geometric form (3.3). Of
secondary importance is the scaling and the necessary conditions (1.9). All of these requirements
generalize to arbitrary space dimension. Although applications in space dimension N> 3 are not
obvious, it is straightforward to sketch the argument leading to KP in N + 1.

Consider the following generalization of (3.1):

MZt + JZx +
N−1∑
n=1

KnZxn = ∇S(Z), Z ∈ R
n, (9.1)

where the vector of spatial variables is x = (x, x1, . . . , xN−1) and M, J, Kn, n = 1, . . . , N − 1, are
skew-symmetric matrices. A periodic travelling wave is of the form

Z(x, t) = Ẑ(k · x + ωt + θ0) ≡ Ẑ(θ ),

for wavenumber vector k = (k, k1 · · · kN−1), frequency ω and phase shift θ0. Substitution of this
ansatz into (9.1) results in the ODE(

ωM + kJ +
N−1∑
n=1

knKn

)
Ẑθ = ∇S(Ẑ). (9.2)

The components of the conservation law for wave action have the natural generalization

A = 1
4π

∫ 2π

0
〈MZθ , Z〉 dθ , B = 1

4π

∫ 2π

0
〈JZθ , Z〉 dθ and Ci = 1

4π

∫ 2π

0
〈KiZθ , Z〉 dθ ,

for i = 1, . . . , N − 1.
Generalizing the modulation ansatz (1.4), introducing slow space scales of order ε2 in all the

transverse directions, substituting into the Euler–Lagrange equation and computing terms up to
fifth order in ε, leads to the following necessary conditions:

Bk = (C1)k = · · · = (CN−1)k = 0,

and the following generalization of KP at fifth order:

(2AkqT + BkkqqX + K qXXX)X +
N−1∑
n=1

(Cn)kn qXnXn = 0. (9.3)
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