
Northumbria Research Link

Citation: Bridges, Thomas J. and Ratliff, Daniel (2016) Double criticality and the two-way Boussinesq 
equation in stratified shallow water hydrodynamics. Physics of Fluids, 28 (6). 062103. ISSN 1070-
6631 

Published by: American Institute of Physics

URL: https://doi.org/10.1063/1.4952714 <https://doi.org/10.1063/1.4952714>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/id/eprint/44106/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Northumbria Research Link

https://core.ac.uk/display/328777606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html




Double criticality and the two-way Boussinesq equation

in stratified shallow water hydrodynamics

Thomas J. Bridges & Daniel J. Ratliff

Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK

Abstract. Double criticality and its nonlinear implications are
considered for stratified N−layer shallow water flows with N =
1, 2, 3. Double criticality arises when the linearization of the steady
problem about a uniform flow has a double zero eigenvalue. We find
that there are two types of double criticality: non-semisimple (one
eigenvector, and one generalized eigenvector), and semi-simple (two
independent eigenvectors). Using a multiple scales argument, dic-
tated by the type of singularity, it is shown that the weakly nonlin-
ear problem near double criticality is governed by a two-way Boussi-
nesq equation (non-semisimple case) and a coupled Korteweg-de
Vries equation (semisimple case). Parameter values and reduced
equations are constructed for the examples of two-layer and three-
layer stratified shallow water hydrodynamics.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Criticality is a central theme in stratified shallow water hydrodynamics. For one-layer flow
with a free surface, criticality of a uniform flow corresponds to Froude number unity. In
two-layer flow there are two Froude numbers and so the “Froude number unity” criterion
fails, and a more general approach is needed. Hence, in N−layer flow of differing densities
with N ≥ 2 and continuously stratified flow, a zero eigenvalue in the linearization about a
uniform flow is taken as the signature of criticality.

In this paper, we consider the problem of “double criticality”, that is, when the lineariza-
tion has two zero eigenvalues. There are two cases: non-semisimple (only one eigenvector
but a second generalized eigenvector), or semi-simple (two linearly independent eigenvec-
tors). Both cases appear in shallow water multi-layer flows. We show that double criticality
is impossible in one layer, in two layers only non-semisimple double criticality is possible and
arises when the velocities in the two layers are nonzero and of opposite sign. In three layers
both types of double criticality are found for a large range of parameter values.

Once it is established that double criticality exists in simple shallow water stratified
models, the next question is the implication for the nonlinear problem. For this question,
we assume that the shallow water models are appended by dispersive terms. The most
interesting case is non-semisimple double criticality, which we show leads to the emergence
of a two-way Boussinesq equation of the form

qTT +
(
νqXX − 1

2
κq2
)
XX

= 0 , (1.1)
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where T,X are slow time and space variables to be defined. The origin of q(X,T ), and
definitions of κ and ν will emerge in the theory.

To focus on a class of systems, the starting point for the analysis in this paper is the
general class of partial differential equations (PDEs)

Ut + F(U)x = DUxxx , U ∈ Rn , (1.2)

with F : Rn → Rn, the flux vector, a given smooth function, and D a given n× n constant
matrix. This class of PDEs includes shallow water models for multi-layered flows of differing
density with weak dispersion, and examples are given in §§5–8. Well-posedness of the initial-
value problem for (1.2) is not required for the reduction theory. Indeed, the dispersionless
shallow water equations for two or more layers are not in general well posed [1, 4].

Systems of the form (1.2) have U = U0, with U0 ∈ Rn a constant vector, as an exact
solution. These constant solutions represent uniform flows in shallow water hydrodynamics.
The linearization of the flux vector about a constant state is the n × n matrix DF(U0)
defined by

DF(U0)V :=
d

ds
F(U0 + sV)

∣∣∣∣
s=0

, ∀ V ∈ Rn . (1.3)

Therefore, the linearization of (1.2) about U0 takes the form

Vt + DF(U0)Vx = DVxxx , V ∈ Rn . (1.4)

The eigenvalues of the n× n constant matrix DF(U0) give the dispersionless characteristic
speeds of the linearization. The characteristic polynomial of DF(U0) is

∆(λ) = det
[
DF(U0)− λI

]
. (1.5)

These characteristic speeds are relative to a fixed frame of reference. A basic state U0 is
said to be critical when

∆(0) = det[DF(U0)] = 0 and ∆′(0) 6= 0 , (1.6)

that is, when one of the dispersionless characteristic speeds vanishes. The state U0 is said
to be doubly critical when

∆(0) = ∆′(0) = 0 and ∆′′(0) 6= 0 , (1.7)

that is, when two of the dispersionless characteristic speeds vanish. A principal aim of
this paper is to show how singularities of the flux vector, arising due to coalescence of zero
eigenvalues, drive the reduction to weakly nonlinear model equations. Hence the precise form
of the dispersion in (1.2) is of secondary importance although it is important that dispersion
is included.

Using a multiple scales argument, with the scaling dictated by the singularity in the flux
vector, the weakly nonlinear problem can be reduced to model equations: criticality (1.6)
reduces (1.2) to the Korteweg-de Vries (KdV) equation, double criticality reduces (1.2) to
either the two-way Boussinesq equation (non-semisimple case) or to coupled KdV equations
(semisimple case). These reductions are summarized in Table 1.
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Table 1: Criticality and emergent modulation equations

# zero dim modulation T X
Eigenvalues Ker(DF) equation

1: ∆(0) = 0 1 qT + κqqX + νqXXX = 0 ε3t εx

2: ∆(0) = 0 1 qTT − (κqqX − νqXX)XX = 0 ε2t εx
∆′(0) = 0

2: ∆(0) = 0 2 qT + K(q)X + VqXXX = 0 ε3t εx
∆′(0) = 0 q = (q1, q2)

In Table 1 the terms in the coupled KdV equations are

K(q) =
1

2

(
K1

11q
2
1 + 2K1

12q1q2 + K1
22q

2
2

K2
11q

2
1 + 2K2

12q1q2 + K2
22q

2
2

)
and V =

[
ν11 ν12
ν21 ν22

]
.

The coefficients κ, ν and the coefficients in K,V appearing in Table 1 emerge from the
reduction theory and are defined in terms of derivatives of the flux vector and a projection
of the dispersion matrix.

The closest theory to double criticality in the literature is the theory of Grimshaw [17]
for resonance. Grimshaw’s theory considers resonance between two modes with the same
(zero or nonzero) characteristic speeds and their unfolding, distinguishing two cases (“kiss-
ing” configuration and “bubbling” configuration) which correspond to the non-semisimple
and semisimple cases in this paper and he shows that either the Boussinesq equation or cou-
pled KdV arises in the weakly nonlinear problem. The principal new features in this paper
are firstly the connection with the concept of criticality in fluid mechanics; secondly, the
emphasis on systems of the form (1.2) where resonance and nonlinearity are both expressed
in terms of properties of the flux vector; and thirdly a multiple scales reduction is used which
confirms the formal asymptotic validity.

For the full Euler equations, a two-way Boussinesq equation has been derived by Hick-
ernell [22, 23] for inviscid stratified shear flow. The basic state is a parallel flow rather
than a uniform flow. Although neither resonance nor criticality is emphasized, it appears
to be implicit in the derivation that a double non-semisimple zero eigenvalue appears in the
linearization about the parallel flow. In the second paper [23] a study of the two-way Boussi-
nesq equation and its implications are studied. In Helfrich & Pedlosky [21] a two-way
Boussinesq equation is derived for a two-layer version of the quasi-geostrophic potential vor-
ticity equation on the β−plane. They explicitly state that the Boussinesq equation arises due
to the coalescence of two modes (see equation (2.18) in [21]), and it is implicit that the double
root is non-semisimple. The two-way Boussinesq equation is given in equation (2.27) in [21].
This theory is extended to the case of a two-way Boussinesq equation with non-constant
coefficients in [25]. Similarly, Mitsudera [29] works with the quasi-geostrophic potential
vorticity equation and studies the linearization about parallel flow and cites resonance as
the starting point for the derivation of both a coupled KdV equation (equation (2.16) and
(2.25) in [29]) and a two-way Boussinesq equation (equation (4.3a) in [29]). Another setting
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where the two-way Boussinesq equation arises is in the weakly nonlinear problem when two
characteristics coalesce in Whitham modulation theory [31].

The coupled KdV equation was first derived in the the fluid mechanics literature by Gear
& Grimshaw [16]. It has since been found in a wide range of examples in stratified shear
flow and stratified shallow water flow [19, 20, 28]. A recent review is given in [18]. The new
features of this paper are firstly the connection between coupled KdV and criticality in fluid
mechanics, secondly how the flux vector is used to define criticality and how its curvature
generates the nonlinearity in the coupled KdV equation, and thirdly, an asymptotically valid
multiple scales expansion is used in the reduction from (1.2) to the coupled KdV system.

The advantage of reduction of the full system, whether it be the Euler equations or the
system (1.2), is that model equations like the two-way Boussinesq equation and the coupled
KdV equation are easier to analyze and in this case both systems have a wide range of
interesting solutions which give a clue to related, and possibly more complicated, solutions
in the full system.

The strategy for showing the reduction from (1.2) to one of the model equations in Table
1 is to introduce an assumption about the form of the solution (ansatz) and then show it is
satisfies (1.2) exactly up to some power of ε, where ε is a measure of the distance in parameter
space from criticality. The reduction theory for the non-semisimple case is given in §4 and
the reduction for the semisimple case is given in §7. The reduced equations are formally
asymptotically valid, in the sense that the neglected terms vanish in the limit ε → 0, but
the question of convergence of the series in ε or validity of the reduction are not considered.
However, in the case where Uxxx is replaced by Uxx in (1.2) the reduced equation in the
semisimple case changes from KdV to Burgers, and a proof of validity and convergence in
this case is given in [11].

The paper applies the theory to three examples: the one-layer, two-layer, and three-layer
shallow water equations with a free surface. In one layer, criticality generates the KdV
equation only. We find that it is impossible to reduce the one-layer shallow water equations
to the 2-way Boussinesq equation, which contradicts longstanding results in the literature.
However, we provide arguments from several viewpoints supporting this conclusion. In two-
layer shallow water flow with a free surface, double criticality occurs and the reduction to
(1.1) is derived in §6. The case of three layers has both types of double criticality, and the
parameter values and reduced equations are derived in §8.

2 Criticality and the flux vector

Consider the linearization of the flux vector F about a family of constant states, U0, and
suppose that the state U0 is critical, that is, it satisfies (1.6). For simplicity the same symbol
U0 will be used for both the general constant state and the critical state (or doubly critical
state) and which is intended will be clear from the context.

Associated with the simple zero eigenvalue at criticality are real right and left eigenvectors

DF(U0)ξ1 = 0 and ηT1 DF(U0) = 0 with 〈η1, ξ1〉 = 1 , (2.1)

where here and throughout
〈u,v〉 = uTv , u,v ∈ Rn , (2.2)

is the standard inner product on Rn.
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Of interest in this paper is the case where the algebraic multiplicity of the eigenvalue
zero is two, called “double criticality”, occurring when the characteristic polynomial satisfies
(1.7). A double zero eigenvalue has two cases: geometric multiplicity one or two. When
the geometric multiplicity is one (the kernel of DF(U0) has dimension one) a generalised
eigenvector is needed,

DF(U0)ξ1 = 0 and DF(U0)ξ2 = ξ1 , (2.3)

with left eigenvectors

ηT2 DF(U0) = 0 and ηT1 DF(U0) = ηT2 . (2.4)

The eigenvectors are numbered so that the natural normalization is in effect,

〈ηi, ξj〉 = δij , i, j = 1, 2 , (2.5)

where δij is the Kronecker delta. There are some subtleties with this normalization and the
theory is recorded in Appendix A. In the case of double criticality with geometric multiplicity
two there are two independent eigenvectors

DF(U0)ξj = 0 and ηTj DF(U0) = 0 , j = 1, 2 , (2.6)

with the normalization (2.5).
The theory is also valid if U0 is near a critical value. To be precise, let U0(α) where α

can be interpreted as one of the components of U0, and re-phrase the condition (1.6) as

det[DF(U0(α))]

∣∣∣∣
α=0

= 0 . (2.7)

Then expand DF in a Taylor series in α

DF(U0(α)) = DF(U0(0)) + αB + · · · , (2.8)

with B = ∂αDF(U0(α))

∣∣∣∣
α=0

. Then it will be clear in the theory that by taking α = α0ε
p

for some p then the theory will still go though, and will generate an unfolding term in the
reduced equations. An example of this construction is given in §4.1.

In principle, one could carry the theory of multiple criticality to zeros of ∆(λ) of any
order. However, each additional zero eigenvalue requires variation of additional parameters.
Simple criticality arises from the variation of one parameter in the family of basic states,
double criticality with one eigenvector requires varying two parameters, and double criticality
with two eigenvectors requires varying three parameters. Hence these three cases will be the
most common, with higher order criticality requiring at least four parameters.

3 From Center-manifold theory to the reduction of

PDEs with dispersion

The reduction strategy here is a generalization of the center-manifold reduction in dynam-
ical systems. Center-manifold theory [12] is used to reduce nonlinear ordinary differential
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equations (ODEs) to simpler ODEs when the linearization about an equilibrium is singular.
Starting with a system of nonlinear ODEs,

Ut + F(U) = 0 , (3.1)

and an equilibrium solution U0 ∈ Rn, satisfying F(U0) = 0, suppose that at some value of
U0 the linearization of F about U0 is singular. Write U0(α), where α is a scalar and can be
interpreted as one of the components of U0, and suppose that

det
[
DF(U0(α))

]
= 0 at α = 0 ,

and the eigenvalue is simple with right ξ and left η eigenvectors. The strategy in center
manifold theory is to split Rn into the kernel of DF(U0(0)) and its complement in Rn and
then assume a solution of the form

U(t) = U0 + εq(T )ξ + ε2W(T, ε) , with 〈η,W〉 = 0 , (3.2)

and T = εt. Substitution of the form of the solution (3.2) into (3.1) and expanding F(U) in
a Taylor series gives

ε2qTξ + ε3WT + εqDF(U0(0))ξ + εαqBξ + ε2DF(U0(0))W + 1
2
ε2q2D2F(U0(0))(ξ, ξ) + · · · ,

with B = ∂αDF(U0(α))
∣∣
α=0

. Taking the inner product with η, and imposing the normal-
ization 〈η, ξ〉 = 1, letting α = α0ε, and dividing by ε2,

qT + µq + 1
2
κq2 + · · · = 0 , (3.3)

with
µ = α0〈η,Bξ〉 and κ = 〈η,D2F(U0(0))(ξ, ξ)〉 .

Neglecting the higher order terms, the normal form (3.3) is the standard normal form for
the saddle-node bifurcation [12]. Its solutions then give information about the nonlinear
behaviour in a neighborhood of the equilibrium solution U0(0).

Now suppose that (3.1) is replaced by the left-hand side of (1.2), Ut +
(
F(U)

)
x

= 0, and
change the scaling to T = ε3t, and q ∼ ε2, then the reduced equation (3.3) is modified to

qT + µqX + κqqX + · · · = 0 . (3.4)

Now add in the dispersion term DUxxx to the governing equation. Since it is linear it just
generates an additional term in (3.4) giving,

qT + µqX + κqqX − νqXXX + · · · = 0 , (3.5)

where ν = 〈η,Dξ〉. Neglecting the higher order terms then results in the KdV equation. It
is this strategy, that has its origins in the center-manifold reduction, which will for the basis
of the reduction theory here.
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4 Double criticality and the 2-way Boussinesq equation

In this section the implications of nonlinearity on double criticality are considered for the
case when the geometric multiplicity is one. With the appropriate scaling and an assumption
about the form of the unknown solution (an ansatz) it is shown that the model in the
weakly nonlinear problem is the two-way Boussinesq equation. The semisimple case requires
a different scaling and solution ansatz and is considered in §7.

Starting with the general class of PDEs (1.2), suppose there exists a uniform flow U0

that is doubly critical (1.7) with one geometric eigenvector (2.3). Introduce the slow time
and space scales

T = ε2t , X = εx , (4.1)

and consider the following ansatz for U(x, t),

U(x, t) = U0 + ε2q(X,T, ε)ξ1 + ε3p(X,T, ε)ξ2 + ε4W(X,T, ε) , (4.2)

with the conditions

〈ηj,W(X,T, ε)〉 = 0 for all X,T, ε , and j = 1, 2 . (4.3)

The key steps that make this ansatz effective are the scaling of the independent (4.1) and
dependent variables (q ∼ ε2, p ∼ ε3, W ∼ ε4), the importance of including the generalized
eigenvector ξ2 in the ansatz, and requiring W to be orthogonal (4.3) to the generalized kernel
of DF(U0).

Substitute the ansatz (4.2) into (1.2) and then evaluate term by term in powers of ε. The
terms in (1.2) are

Ut = ε4qTξ1 + ε5pTξ2 + ε6WT ,

F(U)x = ε4pXξ1 + ε5DF(U0) WX

+1
2
ε5D2F(U0) (qξ1 + εpξ2 + ε2W, qξ1 + εpξ2 + ε2W)X + · · ·

DUxxx = ε5qXXXDξ1 + ε6pXXXDξ2 + ε7DWXXX ,

(4.4)

where

D2F(U0)(V,W) :=
∂2

∂s1∂s2
F(U0 + s1V + s2W)

∣∣∣∣
s1=s2=0

.

Substitute the ε series for each term into (1.2) and split the equation into three parts in the
directions ξ1, ξ2, and the complement. Let P represent the projection onto the complement
of span{ξ1, ξ2}. The three components of the splitting are then

ε4qT + ε4pX = ε5R1

ε5pT + ε5κ qqX = ε5νqXXX + ε6R2 (4.5)

ε6WT + ε5PDF(U0)WX + ε5PD2F(U0)(ξ1, ξ1)qqX = ε5qXXXPDξ1 + ε6R3 ,

where
κ = 〈η2,D

2F(U0)(ξ1, ξ1)〉 and ν = 〈η2,Dξ1〉 , (4.6)

7



and Rj, j = 1, 2, 3, are remainder terms for which explicit expressions can be written down
but are not needed. In the first two equations in (4.5) the remainder term is of higher order.
Therefore dividing the first equation in (4.5) by ε4, and the second equations by ε5, reduces
them to

qT + pX = εR1

pT + κ qqX = νqXXX + εR2 .
(4.7)

Now, let R̂3 = R3 −WT , then the third equation in (4.5), after dividing by ε5, reduces to

d

dX

[
PDF(U0)W + 1

2
PD2F(U0)(ξ1, ξ1)q

2 − qXXPDξ1

]
= εR̂3 . (4.8)

In this latter equation, the linear operator PDF(U0) is invertible since P is the projection
onto the complement of the kernel of DF(U0). Hence it is solvable for W(X,T, ε) as a power
series in ε. Indeed, all three equations (4.7) and (4.8) can be solved order by order in ε.
Expand the functions q, p, and W in a Taylor series in ε

q(X,T, ε) = q0(X,T ) + εq1(X,T ) + O(ε2) ,

p(X,T, ε) = p0(X,T ) + εp1(X,T ) + O(ε2) ,

W(X,T, ε) = W0(X,T ) + εW1(X,T ) + O(ε2) .

Substitution of these expansions into (4.7) and (4.8) generates a sequence of equations for
(qj, pj,Wj), j = 0, 1, . . .. In principle this formal sequence can be solved order by order.
However, only the leading order terms in q and p are needed and so the subscripts are
dropped: q0(X,T ) ≡ q(X,T, 0) and p0(X,T ) ≡ p(X,T, 0). Let B = PDF(U0), then, B is
invertible. Therefore, to leading order,

W0 = −1
2
B−1PD2F(ξ1, ξ1)q

2 + B−1PDξ1 qXX + B−1f0(T ) .

where f0(T ) is an arbitrary function of T , and q, p are the leading order terms in the q, p
expansions.

To leading order the weakly nonlinear modulation equation associated with non-semisimple
double criticality is

qT + pX = 0 and pT + κ qqX = νqXXX . (4.9)

Combining these two equations gives the scalar two-way Boussinesq equation

qTT = −pXT = − ∂

∂X
(pT ) = − ∂

∂X
(−κ qqX + νqXXX) ,

or
qTT +

(
ν qXX − 1

2
κq2
)
XX

= 0 . (4.10)

The coefficient of dispersion ν is defined in (4.6). When ν > 0 (ν < 0) we say that (4.10)
is the “good” (“bad”) Boussinesq equation. In the bad case, the initial value problem for
the linear equation qTT + νqXXXX = 0 is not well posed, although the equation still has a
significant range of interesting bounded solutions [24].

The more interesting coefficient is κ, defined in (4.6). This coefficient can be interpreted
as a curvature as follows. Consider the scalar-valued function

α(s) =
〈
η2,F(U0 + sξ1)〉 .
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Then clearly α′(0) =
〈
η2,DF(U0)ξ1〉 = 0 at criticality and α′′(0) = κ; that is, κ is the

classical scalar curvature of the one-parameter path through the flux vector, α(s), at s = 0.
The reduced equation for q in (4.10) is independent of the choice of scaling of ξ1 and ξ2

in the following sense. The normalization of the eigenvectors (2.5) still leaves freedom to
scale ξ1 in (2.3) – as long as the same scaling is used on ξ2 (see Appendix A for details of
the normalization theory for the eigenvectors in the non-semisimple case). However if ξ1 is
multiplied by a non-zero real parameter, then q(X,T, ε) in (4.2) should also be multiplied by
the inverse of that real parameter in which case (4.2) is invariant, and the reduced equation
(4.10) is then in terms of the scaled q.

4.1 Unfolding criticality and the second derivative

As discussed in §2 and shown in (2.8) the theory can be modified to include the case when the
uniform flow is near critical. Take α = α0ε

2 in (2.8) and add the fifth-order term α0ε
5qXBξ

in the expansion for F(U) in (4.4). After projection, this term will modify (4.7) to

qT + pX = εR1

pT + µqX + κ qqX = νqXXX + εR2 .
(4.11)

with µ = α0〈η,Bξ〉. The Boussinesq equation (4.10) is then modified to

qTT − µqXX +
(
ν qXX − 1

2
κq2
)
XX

= 0 . (4.12)

In other words, the qXX term does appear naturally in the emergent Boussinesq equation
and it is associated with unfolding the uniform flow near criticality to order ε2. Henceforth,
the unfolding terms will not always be included, but they are easily added as needed, using
the above argument.

5 Shallow water equations for one-layer flow

The most well known setting where the 2-way Boussinesq equation has appeared is in one-
layer shallow water hydrodynamics. Indeed, this is the setting where the two-way Boussinesq
equation was first derived [9]. In principle it should be a straightforward argument to use
the theory of this paper to reduce a shallow-water Boussinesq equation for one layer to the
two-way Boussinesq equation. However, this reduction fails, unless h0 = 0.

Figure 1: Schematic of the flow field for one layer shallow water hydrodynamics
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Consider a typical example in the equivalence class of Boussinesq shallow water equations

ht + uhx + hux = 1
6
h30uxxx

ut + uux + ghx = −1
2
gh20hxxx ,

(5.1)

for h(x, t), the fluid depth, and u(x, t), the horizontal fluid velocity, as shown schematically
in Figure 1, where g > 0 is the gravity coefficient and h0 a mean depth [14]. The system
(5.1) can be written in the standard form (1.2) by taking

U =

(
h
u

)
, F(U) =

(
hu

1
2
u2 + gh

)
, D =

[
0 1

6
h30

−1
2
gh20 0

]
. (5.2)

Membership of (5.1) in the equivalence class of Boussinesq shallow water models is justified
by the fact that the dispersion relation for the linearization of (5.1) is equivalent to that for
the full water wave problem up to order (kh0)

2. To see this, consider the linearization of
(5.1) about (h, u) = (h0, u0),

ht + h0ux = 1
6
h30uxxx

ut + ghx = −1
2
gh20hxxx .

(5.3)

It has dispersion relation

c2

gh0
=

(
1 +

1

6
k2h20

)(
1− 1

2
k2h20

)
.

Expanding shows that it agrees with the exact dispersion relation, c2

gh0
= tanh(kh0)

kh0
up to

second order. This Boussinesq equation is not well-posed. In the limit kh0 → ∞ the
growth rate of the unstable linear modes tends to infinity generating an ill-posed initial
value problem. However, the reduction to long-wave models (KdV, 2-way Boussinesq) goes
through unchanged, independent of linear well-posedness.

The linearization of the flux vector of (5.1) about a constant state U0 = (h0, u0) is

DF(U0) =

[
u0 h0
g u0

]
,

with characteristic polynomial

∆(λ) := det[DF(U0)− λI] = λ2 − 2u0λ+ gh0(F
2 − 1) , F 2 =

u20
gh0

.

When ∆(0) = 0 the classic Froude number unity condition for criticality is recovered, and
it is straightforward to show, using the theory in §7 (see equations (7.5) and (7.6)), that the
system (5.1) can be reduced to the KdV equation to leading order

qT + κqqX − νqXXX = 0

with T = ε3t, X = εx and

ν =
1

6

gh30
u0

and κ =
3

2
g .
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This reduction recovers the usual velocity form of the KdV equation in shallow water (cf.
equation (6.9c) on page 693 of Dingemans [14]).

For double criticality, and the emergence of a 2-way Boussinesq equation, a necessary
condition is that DF(U0) should have a double nonsemisimple zero eigenvalue. But

∆(0) = ∆′(0) = 0 ⇒ u0 = h0 = 0 .

When criticality is satisfied, a double zero eigenvalue exists if and only if h0 = 0. Hence, the
theory of this paper suggests that the 2-way Boussinesq equation is not an asymptotically
valid model for shallow water hydrodynamics in one layer. Another concept of validity is
in the context of the initial-value problem where the flow due to initial data of the full
water-wave problem is compared with the flow of the two-way Boussinesq equation with
comparable initial data. This two concepts of validity will be considered in turn.

The 2-way Boussinesq equation for shallow water waves, originally derived by Boussinesq
and quoted in the literature is

ηtt − gh0ηxx = gh0

(
3η2

2h0
+
h20
3
ηxx

)
xx

. (5.4)

There are two natural scalings of this equation. Substitution of the Boussinesq scaling

T = ε2t , X = εx , η = ε2η̂ ,

gives

η̂TT −
gh0
ε2
η̂XX = gh0

(
3η̂2

2h0
+
h20
3
η̂XX

)
XX

. (5.5)

There is clearly a problem in the limit as ε→ 0 with the second term unless gh0 ∼ ε2. This
problem is consistent with the requirements for the theory of double criticality in this paper.
However, if h0 ∼ ε2 then the dispersive term is of higher order putting it out of balance with
the other terms in the equation, leaving a purely hyperbolic equation without dispersion.
On the other hand, the limit h0 → 0 will bring in the importance of viscous terms, and so
the inviscid model for shallow water hydrodynamics is no longer valid.

The other natural scaling is to take

T = εt , X = εx , η = ε2η̂ .

Substitution into (5.4) then gives

η̂TT − gh0η̂XX = gh0ε
2

(
3

2h0
η̂2 +

h20
3
η̂XX

)
XX

. (5.6)

However, in the limit as ε → 0 the nonlinearity and dispersion are vanishingly small in
comparison to the linear wave dynamics. One can try other scalings, but there does not
appear to be any scaling that renders (5.4) homogeneous in ε.

There are other arguments in the literature for non-validity of (5.4). Keulegan &
Patterson [26] argue that the derivation of the two-way Boussinesq equation requires the
imposition of initial conditions so that the Boussinesq equation is restricted to be a one-way
equation (effectively reducing it to KdV). Specifically they state between equations (102)
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and (103) that “...restricting ourselves to waves propagated in the positive x−direction, we
obtain ...” Thereby nullifying the two-way property.

The rigorous validity of the initial value problem, comparing the flow of initial data for
the full water wave problem with initial data for model equations has been considered by
Schneider & Wayne [32, 33]. They argue that all solutions of the initial value problem
settle into solutions of a left or right running KdV equation. These results are consistent with
[26] and consistent with the fact that the two-way Boussinesq equation can be approximately
decomposed into a left and right running KdV equations. Schneider & Wayne, in §5.2
of [33], give an explicit argument showing that the Boussinesq equation will not sustain a
validity argument because of the presence of ε terms in the equation (as argued above),
and they prove in Schneider & Wayne [32] that the only long-wave models which are
asymptotically valid are the left and right running KdV equations.

The two-way Boussinesq equation can still be used as a model for shallow water hydrody-
namics if limited to solutions travelling in one direction of the KdV type. Other more exotic
solutions such as two-way standing waves are unlikely to accurately represent solutions of
the full water-wave problem.

On the other hand, by stratifying the flow, by allowing two layers of different density
in the shallow water model, conditions for the emergence of an asymptotically valid 2-way
Boussinesq equation are found.

6 Double criticality for two-layer shallow water flow

The shallow water equations for two layers of differing density can be expressed in conser-
vation law form Ut + F(U)x = 0 with

U =


h1
h2
u1
u2

 and F(U) =


h1u1
h2u2

1
2
u21 + gh1 + rgh2
1
2
u22 + gh1 + gh2

 , (6.1)

where, as shown schematically in Figure 2, h1(x, t), h2(x, t) are the layer depths and u1(x, t), u2(x, t)
are the horizontal velocities, and

r =
ρ2
ρ1

< 1 . (6.2)

These equations are derived from the Euler equations in [2, 3]. By adding in dispersion they
take the form

Ut + F(U)x = DUxxx , U ∈ R4 . (6.3)

There are a range of derivations of dispersive Boussinesq-type equations for shallow-water
two-layer fluids in the literature using various strategies and resulting in a range of forms (for
example, [13, 30, 5, 15]), usually with mixed space and time derivatives in the dispersion.
Here we use the Boussinesq equation derived in [15] because it is transformed so that the
dispersion terms appear in the form (6.3) with all the dispersion in terms of space derivatives

∂

∂t
(ρ1u1) +

∂

∂x
(1
2
ρ1u

2
1 + ρ1gh1 + ρ2gh2) = a11

∂3h1
∂x3

+ a12
∂3h2
∂x3

∂

∂t
(ρ2u2) +

∂

∂x
(1
2
ρ2u

2
2 + ρ2gh1 + ρ2gh2) = a21

∂3h1
∂x3

+ a22
∂3h2
∂x3

.

(6.4)
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Figure 2: A schematic of two-layer stratified shallow water with a free surface.

with no change to the mass conservation equations. The coefficients are

a11 = −1
3
ρ1gh

2
1 − ρ2gh1h2 − 1

2
ρ2gh

2
2

a12 = a21 = −1
6
ρ2gh

2
1 − 1

4
ρ2gh1h2 − 1

2

ρ22
ρ1
gh1h2 − 5

12
ρ2gh

2
2

a22 = −1
2
rρ2gh1h2 − 1

3
ρ2gh

2
2 .

The dispersive terms are derived in Chapter 2.5 of [15] including surface tension at the two
interfaces. The dispersion is confirmed to be in the equivalence class of Boussinesq equations
for this case by showing that the dispersion relation for the linearization of (6.4) agrees up
to quadratic order with the exact dispersion relation for two-layer flow with a free surface.

The Donaldson-dispersion generates a D matrix of the form

D =


0 0 0 0
0 0 0 0

a11/ρ1 a12/ρ1 0 0
a12/ρ2 a22/ρ2 0 0

 . (6.5)

Let U0 ∈ R4 be a uniform flow. In this section it will be shown that there are parameter
values when this family of constant states undergoes double criticality, and the emergent
two-way Boussinesq equation is constructed.

The linearization of the flux vector about the family of constant states is

DF(U0) =


u1 0 h1 0
0 u2 0 h2
g rg u1 0
g g 0 u2

 , (6.6)

where for simplicity the same symbol is used for the flow variable and the uniform flow. The
eigenvalues of DF(U0) satisfy,

∆(λ) := det[λI−DF(U0)] = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 ,

with
a3 = −2(u1 + u2)

a2 = 4u1u2 + u21 + u22 − gh1 − gh2
a1 = 2gh1u2 + 2gh2u1 − 2u1u2(u1 + u2)

a0 = u21u
2
2 + g(1− r)h1gh2 − gh1u22 − gh2u21
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These coefficients agree with the calculation in the Appendix of Lawrence [27]. The matrix
DF(U0) has a simple zero eigenvalue (critical flow) if a0 = 0 but a1 6= 0 and it has a double
zero eigenvalue (double criticality) if a0 = a1 = 0 and a2 6= 0.

Introduce Froude numbers in each layer

F 2
1 =

u21
gh1

and F 2
2 =

u22
gh2

. (6.7)

Then a0 = 0 simplifies to (
F 2
1 − 1

)(
F 2
2 − 1

)
= r . (6.8)

For fixed r, this condition generates a pair of hyperbolae in the (F 2
1 , F

2
2 ) plane and is the well-

known condition for critical flow of two layers with a free surface [6, 1, 27, 3]. A geometric
view of the surface generated by (6.8) is given in [10].

For double criticality we need also a1 = 0 which simplifies to

u2
gh2

(
F 2
1 − 1

)
+

u1
gh1

(
F 2
2 − 1

)
= 0 . (6.9)

Combining (6.8) and (6.9) gives

(1− F 2
1 )2 = −rh2u1

h1u2
.

Hence, a necessary condition for double criticality is that both u1 and u2 are nonzero and of
opposite sign

u1u2 < 0 . (6.10)

For the algebraic multiplicity to be exactly two,

0 6= ∆′′(0) = a2 = 4u1u2 − gh1(1− F 2
1 )− gh2(1− F 2

2 ) ,

or

h1(F
2
1 − 1) + h2(F

2
2 − 1) 6= −4

g
u1u2 . (6.11)

When the three conditions (6.8), (6.9), and (6.11) are satisfied, there exists physically
realizable values of F1 and F2 at which double criticality occurs. An example is

gh1 = 27 , gh2 = 16 , u1 = 3 , u2 = −2 , r = 1
2
. (6.12)

With these parameter values,

F 2
1 =

u21
gh1

=
1

3
and F 2

2 =
u22
gh2

=
1

4
,

and the conditions ∆(0) = ∆′(0) = 0 and ∆′′(0) 6= 0 are satisfied.
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6.1 Generalized eigenvectors

Assume the conditions (6.8) and (6.9) are satisfied. Then the algebraic multiplicity of the
zero eigenvalue is two. By computing the eigenvectors, it will be shown that the geometric
multiplicity is at most one.

An eigenvector ξ1 ∈ R4 satisfies DF(U0)ξ1 = 0 with DF(U0) defined in (6.6). Writing
this out gives

ξ13 = −u1
h1
ξ11

ξ14 = −u2
h2
ξ12 ,

(6.13)

and [
1− F 2

1 r
1 1− F 2

2

](
ξ11
ξ12

)
=

(
0
0

)
(6.14)

The matrix on the left is singular due to (6.8) and it has a simple zero eigenvalue. Existence
of a second zero eigenvalue would require a zero trace but a zero trace violates (6.8). Note
that the simple zero eigenvalue of the matrix in (6.14) does not contradict the fact that
DF(U0) has a double zero eigenvalue.

Combining (6.14) and (6.13), the sole geometric eigenvector at criticality is

ξ1 = aξ̂1 with ξ̂1 =


r

F 2
1 − 1
−r u1

h1

−u2
h2

(F 2
1 − 1)

 ,

where a is an arbitrary nonzero real number.
Since the algebraic multiplicity is two, there must be a generalised eigenvector. See

Appendix A for a summary of the theory of generalised eigenvectors needed. The generalized
eigenvector ξ2 satisfies

DF(U0)ξ2 = ξ1 . (6.15)

Calculating gives
ξ23 = a r

h1
− u1

h1
ξ21

ξ24 = a
(F 2

1−1)
h2
− u2

h2
ξ22 ,

and [
1− F 2

1 r
1 1− F 2

2

](
ξ21
ξ22

)
= −2a

g

(
u1
h1
r

u2
h2

(F 2
1 − 1)

)
. (6.16)

The solvability condition for this inhomogeneous problem is precisely (6.9). The generalized
eigenvector is

ξ2 = aξ̂2 + bξ̂1, with ξ̂2 =


0

−2 u1
gh1
r
h1

(F 2
1−1)
h2

+ 2
g
u1u2
h1h2

 , (6.17)

where b is an arbitrary real number.
The adjoint eigenvectors satisfy

DF(U0)
Tη2 = 0 and DF(U0)

Tη1 = η2 .
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Computing as above gives,

η2 = cη̂2 with η̂2 =


u1
h1

(1− F 2
2 )

−r u2
h2

−(1− F 2
2 )

r

 ,

where c is an arbitrary non-zero real number, and

η1 = cη̂1 + dη̂2 with η̂1 =


− 1
h1

(1− F 2
2 )

−2
g
u1u2
h1h2

(1− F 2
2 ) + r

h2

0
2
g
u1
h1

(1− F 2
2 )

 ,

where d is an arbitrary real number.
There are four free constants, but two can be fixed in order to ensure that the conditions

(1.8) are satisfied. Using the strategy in Appendix A and computing,

〈η̂1, ξ̂1〉 = 〈η̂2, ξ̂2〉 = r

[
4

g

u1u2
h1h2

+
1

h1
(F 2

2 − 1) +
1

h2
(F 2

1 − 1)

]
,

and the term in brackets is nonzero due to the assumption (6.11). The parameters a and c
are required to satisfy

ac = 〈η̂1, ξ̂1〉−1 .
The inner product 〈η̂2, ξ̂1〉 = 0 by solvability of (6.15). It remains to compute the other
inner product of cross terms,

〈η̂1, ξ̂2〉 =
4

gh1h2

[
2(1− F 2

2 )u2 − ru1 − 2ru2
]
.

For normalization it is required that (1.9)

bc+ ad = −(ac)2〈η̂1, ξ̂2〉 .

Therefore, we can take a = 1, d = 0, b = −c〈η̂1, ξ̂2〉, and

c =
1

r

[
4

g

u1u2
h1h2

+
1

h1
(F 2

2 − 1) +
1

h2
(F 2

1 − 1)

]−1
.

Hence the eigenvector set for double criticality is

ξ1 =


r

F 2
1 − 1
−r u1

h1

−u2
h2

(F 2
1 − 1)

 , ξ2 =


0

−2 u1
gh1
r
h1

(F 2
1−1)
h2

+ 2
g
u1u2
h1h2

+ bξ̂1 ,

and

η1 = c


− 1
h1

(1− F 2
2 )

−2
g
u1u2
h1h2

(1− F 2
2 ) + r

h2

0
2
g
u1
h1

(1− F 2
2 )

 , and η2 = c


u1
h1

(1− F 2
2 )

−r u2
h2

−(1− F 2
2 )

r

 ,

and they satisfy (1.8).
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6.2 Emergent two-way Boussinesq equation

At double criticality, apply the theory of §4 to (6.3), to give the two-way Boussinesq equation
at criticality

qTT +
(
ν qXX − 1

2
κq2
)
XX

= 0 . (6.18)

Compute κ using the formula (4.6). The second derivative of the flux vector at U0 in the
direction ξ1 is

D2F(U0)(ξ1, ξ1) =
d2

ds2
F(U0 + sξ1)

∣∣∣∣
s=0

=


−2r2 u1

h1

−2u2
h2

(1− F 2
1 )2

r2
u21
h21

u22
h22

(1− F 2
1 )2

 ,

and so
κ = 〈η2,D

2F(U0)(ξ1, ξ1)〉 = −3cr2
u1u2
h1h2

F 2
1 , (6.19)

using the conditions (6.8) and (6.9) to simplify. The coefficient κ in (6.19) is nonzero at
double criticality and sign(κ) = sign(c). To compute the coefficient of dispersion, use the
definition of D in (6.5),

ν = 〈η2,Dξ1〉 =
cr

ρ1

(
a11(F

2
2 − 1) + 2a12 +

a22
r

(F 2
1 − 1)

)
.

The expression for ν is quite complicated when the coefficients (6.4) are substituted. The
coefficient can be explicitly computed for the numerical values (6.12) and we find that ν < 0.
The sign of ν determines whether the Boussinesq is good (ν > 0) or bad (ν < 0). Hence,
for the numerical values (6.12) the two-way Boussinesq equation is linearly ill-posed. This
ill-posedness is not surprising and may be capturing the reduction of the Kelvin-Helmholtz
instability associated with the state (6.12). Even in the ill-posed case, the Boussinesq equa-
tion has a wide range of interesting solutions [7, 24, 23].

7 Semisimple double criticality and coupled KdV

In this section, modulation equations are derived for the weakly nonlinear problem in the case
of double criticality with two linearly independent eigenvectors. Starting with the system
(1.2) suppose that the conditions (1.6) and (1.7) are satisfied with two independent left and
right eigenvectors

DF(U0)ξj = 0 and ηTj DF(U0) = 0 , j = 1, 2 , (7.1)

with normalization (1.8).
Introduce the functions

Kk
ij = 〈ηk,D2F(U0)(ξi, ξj)〉 and νij = 〈ηi,Dξj〉 , i, j = 1, 2 . (7.2)
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We will show that the weakly nonlinear dynamics of (1.2) is governed by the coupled KdV
equations

∂q1
∂T

+ K1
11 q1

∂q1
∂X

+ K1
12

∂(q1q2)

∂X
+ K1

22q2
∂q2
∂X

= ν11
∂3q1
∂X3

+ ν12
∂3q2
∂X3

∂q2
∂T

+ K2
11 q1

∂q1
∂X

+ K2
12

∂(q1q2)

∂X
+ K2

22q2
∂q2
∂X

= ν21
∂3q1
∂X3

+ ν22
∂3q2
∂X3

,

(7.3)

where the slow time and space scales correspond to the KdV scaling

T = ε3t , X = εx . (7.4)

A special case of this result is when the zero eigenvalue is simple with right eigenvector ξ1
and left eigenvector η1, and the single KdV equation emerges

qT + κqqX = νqXXX , (7.5)

with
κ = 〈η1,D

2F (U0)(ξ1, ξ1)〉 and ν = 〈η1,Dξ1〉 . (7.6)

The strategy for deriving the modulation equation (7.3) is similar to §4. Introduce an
ansatz for the solution of (1.2),

U(x, t) = U0 + ε2q1(X,T, ε)ξ1 + ε2q2(X,T, ε)ξ2 + ε4W(X,T, ε) , (7.7)

with
〈ηj,W(X,T, ε) = 0 , for j = 1, 2 , ∀(X,T, ε) .

A key difference from the non-semisimple case is that the scaling is the same on both the
q1ξ1 and q2ξ2 terms. Substitute (7.7) into (1.2)

Ut = ε5(q1)Tξ1 + ε5(q2)Tξ2 + ε7WT .

F(U) = F(U0) + ε4DF(U0)W + 1
2
ε4D2F(U0)(q1ξ1 + q2ξ2 + ε2W, q1ξ1 + q2ξ2 + ε2W) + · · ·

F(U)x = ε5DF(U0)WX + 1
2
ε5D2F(U0)(q1ξ1 + q2ξ2 + ε2W, q1ξ1 + q2ξ2 + ε2W)X + · · ·

DUxxx = ε5D((q1)XXXξ1 + (q2)XXXξ2 + ε2WXXX) .

Split the equation into three parts according to the decomposition

Rn = span{ξ1} ⊕ span{ξ2} ⊕W ,

where W is the orthogonal complement with projection P : Rn →W defined by

P = I− ξ1η
T
1 − ξ2η

T
2 .

The first two components, in the directions ξ1 and ξ2, are,

∂q1
∂T

+
∂

∂X

(
1
2
K1

11 q
2
1 + K1

12 q1q2 + 1
2
K1

22 q
2
2

)
= ν11 (q1)XXX + ν12 (q2)XXX + ε2R1

∂q2
∂T

+
∂

∂X

(
1
2
K2

11 q
2
1 + K2

12 q1q2 + 1
2
K2

22 q
2
2

)
= ν21 (q1)XXX + ν22 (q2)XXX + ε2R2 ,
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where the coefficients are as defined in (7.2). The component in the W direction, after
dividing by ε5, is

d
dX

[
PDF(U0)W + 1

2
PD2F(U0)(q1ξ1 + q2ξ2, q1ξ1 + q2ξ2)

−PD((q1)XXXξ1 + (q2)XXXξ2)

]
= ε2R3 .

Since PDF(U0) is invertible, the W equation is solvable for W as a function of q1 and q2 to
leading order. This asymptotic validity is confirmed by introducing a perturbation expansion
for q1, q2 and W,

q1(X,T, ε) = q01(X,T ) + εq11(X,T ) + O(ε2) ,

q2(X,T, ε) = q02(X,T ) + εq12(X,T ) + O(ε2) ,

W(X,T, ε) = W0(X,T ) + εW1(X,T ) + O(ε2) ,

Substitution shows that q01 and q02 satisfy the coupled KdV equation and W0 can be deter-
mined as a function of q01 and q02. In principle the higher-order terms (qn1 , q

n
2 ,Wn) can be

solved term by term to any order with the above coupled KdV equation the asymptotically
correct leading order term, although convergence of this asymptotic series is outside the
scope of this paper. Replacing q01(X,T ) ≡ q1(X,T, 0) and q02(X,T ) ≡ q2(X,T, 0) gives the
coupled KdV equation (7.3) as the appropriate modulation equation for the weakly nonlinear
dynamics near double semisimple criticality.

The KdV equation and coupled KdV equations derived in (7.5) and (7.3) are relative to
a frame of reference fixed in space.

8 Three-layer SWEs with a free surface

In this section the case of shallow water with three layers of differing density and stable
stratification is considered. We find that there is a wide range of parameter values for which
double criticality occurs.

Figure 3: Schematic of the flowfield for three-layer shallow water hydrodynamics.

Let ρj, hj(x, t) and uj(x, t) be the density, depth and horizontal velocity in each layer,
as shown in the schematic in Figure 3, with stable stratification

ρ1 > ρ2 > ρ3 > 0 . (8.1)

19



The governing equations can be written in the form (1.2)

Ut + F(U)x = DUxxx , U ∈ R6 , (8.2)

with

U =


h1
h2
h3
u1
u2
u3

 and F(U) =



h1u1
h2u2
h3u3

1
2
u21 + gh1 + r2gh2 + r3gh3
1
2
u22 + gh1 + gh2 + r3

r2
gh3

1
2
u23 + gh1 + gh2 + gh3


where r2 = ρ2/ρ1 and r3 = ρ3/ρ1, and g is the gravitational constant. These equations are
derived (for any number of layers) in Baines [2, 3].

A derivation of the dispersion matrix D for this case is outside the scope of this paper.
Indeed, as far as we are aware there are no derivations in the literature of the dispersive
terms for three-layer shallow water flow with a free surface. Here, it is assumed that D is a
given constant matrix, and conditions for double criticality are derived as they are based on
the flux vector only.

8.1 Parameter conditions for double criticality

Let U0 = (h01, h
0
2, h

0
3, u

0
1, u

0
2, u

0
3) be a constant uniform state, and look at the derivative of the

flux vector evaluated on this state,

DF(U0) =


u01 0 0 h01 0 0
0 u02 0 0 h02 0
0 0 u03 0 0 h03
g gr2 gr3 u01 0 0
g g gr3/r2 0 u02 0
g g g 0 0 u03

 . (8.3)

Here and henceforth the superscripts on hj and uj will be dropped to lighten notation, and
moreover the same symbols hj, uj, j = 1, 2, 3, will be used for both the constant state and
special values at which criticality and double criticality occur, with the distinction clear from
the context. A constant state U0 is critical if (1.6) is satisfied with

det(DF(U0)) = g3h1h2h3

[
(F 2

1 − 1)

(
(F 2

2 − 1)(F 2
3 − 1)− r3

r2

)
−r2

(
F 2
3 − 1 +

r3
r2

)
− r3F 2

2

]
,

(8.4)

and so parameter values at simple criticality satisfy

(1− F 2
1 )

(
(1− F 2

2 )(1− F 2
3 )− r3

r2

)
+ r2

(
F 2
3 − 1 +

r3
r2

)
+ r3F

2
2 = 0 , (8.5)

where Fj corresponds to the Froude number in each layer,

F 2
j =

u2j
ghj

.
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This condition for criticality agrees with that in Benton [6] (Benton’s strategy is to first
reduce the 6× 6 matrix to a 3× 3 matrix as in equation (8.12) below).

Parameter values satisfying (8.5) but ∆′(0) 6= 0 correspond to simple criticality at which
a single KdV equation can be expected to emerge. Here the interest is in double criticality.
Computing ∆′(λ) at λ = 0 and dividing the expression by g3h1h2h3, which is nonzero, the
condition ∆′(0) = 0 reduces to

2u1
gh1

(
(1− F 2

2 )(1− F 2
3 )− r3

r2

)
+

2u2
gh2

(
(1− F 2

1 )(1− F 2
3 )− r3

)
+

2u3
gh3

(
(1− F 2

1 )(1− F 2
2 )− r2

)
= 0 .

(8.6)

8.1.1 An example of double criticality

The range of parameter values satisfying the two conditions (8.5) and (8.6) is extensive.
Here, an example of parameter values is computed.

First take the velocity in the middle layer to be zero: F2 = 0. In this case two 2 layer
flows are embedded in the 3 layer flow and double criticality is then an interaction between
the upper layer and lower layer criticality.

With F2 = 0, the first condition (8.5) factorizes into(
F 2
3 − 1 +

r3
r2

)(
F 2
1 − 1 + r2

)
= 0 . (8.7)

This equation is satisfied by either

F 2
3 = 1− r3

r2
or F 2

1 = 1− r2 , (or both) .

The second condition (8.6) reduces to

2u1
gh1

(
F 2
3 − 1 +

r3
r2

)
+

2u3
gh3

(
F 2
1 − 1 + r2

)
= 0 . (8.8)

In fact the two equations (8.7) and (8.8) can not be both satisfied unless both factors in
(8.7) are zero. Hence one solution for double criticality is

F 2
1 = 1− r2 , F 2

2 = 0 , F 2
3 = 1− r3

r2
. (8.9)

However, the distinction between semisimple double criticality and non-semisimple double
criticality can be made only by computing the eigenvectors.

8.2 Geometric eigenvector(s) at double criticality

To determine geometric multiplicity the kernel of DF(U0) needs to be computed. Let ξ ∈ R6

be an eigenvector of DF(U0),
DF(U0)ξ = 0 , (8.10)
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with DF(U0) given in (8.3). Since h1, h2 and h3 are strictly positive the first three equations
in (8.10) can be solved to give

ξj+3 = −pjξj , j = 1, 2, 3 , pj =
uj
hj
. (8.11)

Substitution into the other three equations in (8.10) then gives a 3× 3 system1− F 2
1 r2 r3

1 1− F 2
2

r3
r2

1 1 1− F 2
3


ξ1ξ2
ξ3

 = 0 . (8.12)

Eliminate ξ2 using the third equation,

ξ2 = −ξ1 − (1− F 2
3 )ξ3 , (8.13)

and substitute into the first two equations, giving the 2× 2 system[
F 2
2

r3
r2
− (1− F 2

2 )(1− F 2
3 )

1− r2 − F 2
1 r3 − r2(1− F 2

3 )

] (
ξ1

ξ3

)
= 0 , (8.14)

The geometric multiplicity is determined by the number of independent solutions of (8.14).
When the conditions (8.9) are satisfied, the 2 × 2 matrix on the left-hand side of (8.14)
vanishes giving two independent solutions, and hence the example (8.9) corresponds to the
semisimple case. Before proceeding to computing the eigenvectors in this case, we first
identify parameter values where the double criticality can be non-semisimple.

8.3 The non-semisimple case – an example

Since F2 = 0 leads to semisimple double criticality, take F3 = 0, simplifying the double
criticality conditions (8.5) and (8.6) to

(1− F 2
1 )

(
(1− F 2

2 )− r3
r2

)
+ (r3 − r2) + r3F

2
2 = 0 , (8.15)

and
2u1
gh1

(
1− F 2

2 −
r3
r2

)
+

2u2
gh2

(
1− F 2

1 − r3
)

= 0 . (8.16)

The criticality condition (8.15) can be factorized into

(F 2
1 − 1 + r3)

(
F 2
2 − 1 +

r3
r2

)
= r2 +

r23
r2
− 2r3 .

Plotting in the (F1, F2) plane gives two families of curves. Intersection with (8.16) then gives
points of double criticality. For example, take

r2 =
1

2
, F 2

1 = r3, F 2
2 =

1

2
− r3, F3 = 0 , and r3 6=

1

2
. (8.17)
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At these values, the conditions (8.15) and (8.16) are satisfied with the additional requirement

2
u2
h2

+
u1
h1

= 0 . (8.18)

With the parameter values (8.17) and the parameter constraint (8.18) the kernel of DF(U0)
is one dimensional, and the generalised eigenvectors are found to be

ξ̂1 =


1
−2
1
−p1
2p2
0

 , ξ̂2 =
1

g(1− 2r3)



−2p1
0

2p1
g(1−2r3)

h1
+ 2p21

−2g(1−2r3)
h2

g(1−2r3)
h3


,

where
pj =

uj
hj
, j = 1, 2, 3 .

The kernel of DF(U0)
T is also one-dimensional with generalized eigenvectors

η̂1 =



− 2p21
g(1−2r3) −

1
h1

1
h2

− r3
h3

2p1
g(1−2r3)

0
− 2p1r3
g(1−2r3)


, η̂2 =


p1
−p2

0
−1
1
−r3

 .

Now use the algorithm in Appendix A to normalize these vectors. Without loss of generality
take a = 1 and d = 0. Then the normalized generalized eigenvectors are

ξ1 = ξ̂1 , ξ2 = ξ̂2 + bξ̂1 , η1 = cη̂1 , η2 = cη̂2 .

The normalization (1.8) then requires

c = − gh1h2h3(1− 2r3)

4p21h1h2h3 + g(1− 2r3)(r3h1h2 + 2h1h3 + h2h3)
, (8.19)

and

b = − 4cp1
g(1− 2r3)

[
2r3

h1(1− 2r3)
+

1

h1
− r3
h3

]
. (8.20)

This case, F3 = 0, effectively embeds the two-layer example from §6 in the three-layer
problem, and the two streams are required to go in opposite directions: the constraint (8.18)
requires u1u2 < 0 and so the uniform flow is Kelvin-Helmholz unstable.

8.3.1 The form of the emergent Boussinesq equation

The nonlinear coefficient of the two-way Boussinesq equation can be calculated using the
formula (4.6). The coefficient of the nonlinearity is found to be

κ := 1
2
〈η2,D

2F(U0)(ξ1, ξ1)〉 =
c

2p1
(p31 − 4p32) = 3cp22,
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by using (8.18). The dispersion coefficient ν requires an explcit expression for the dispersion
matrix D. The important property of ν is its sign, and taking a clue from the two-layer
case and the presence of Kelvin-Helmholz instability, it is expected that ν < 0 in this case.
Therefore the emergent Boussinesq model for three layered flow is

qTT
(
ν qXX − 3cp22q

2
)
XX

= 0 , (8.21)

with the conjecture that ν < 0. As in the two-layer case the emergent Boussinesq equations
was a wide range of interesting solutions [7, 24, 23].

8.4 The semsimple case – an example

At the special case (8.9) it is clear that there are two independent solutions, giving the
semisimple case. In this subsection the eigenvectors are calculated and the potential form of
the emergent coupled KdV equation given. Fix the parameter values at

u2 = 0 , F 2
1 = 1− r2 , F 2

3 = 1− r3
r2
. (8.22)

It is now straightforward to calculate the eigenvectors

ξ1 =


1
−1
0

−u1/h1
0
0

 , ξ2 =


0

−r3/r2
1
0
0

−u3/h3

 ,

and the adjoint eigenvectors, which satisfy

DF(U0)
Tη = 0 ,

are

η1 =
h1
2u1


u1/h1

0
0
−1
r2
0

 , η2 =
h3
2u3


0
0

u3/h3
0
1
−1

 .

They have been normalised to satisfy (1.8).

8.4.1 The form of the emergent coupled KdV

The nonlinearity in the reduced system in the semisimple case is

∂

∂x

(
1
2
K1

11q
2
1 + K1

12q1q2 + 1
2
K1

22q
2
2

)
∂

∂x

(
1
2
K2

11q
2
1 + K2

12q1q2 + 1
2
K2

22q
2
2

) (8.23)
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where Kk
ij is defined in (7.2). Only 2 out of 6 Kk

ij coefficients are nonzero in this case.
Computing we find

K1
11 = −3

2

u1
h1
, K1

12 = 0 , K1
22 = 0

K2
11 = 0 , K2

12 = 0 , K2
22 = −3

2

u3
h3
,

where u1, u3 and h1, h3 satisfy the constraints (8.22). Hence, the coupled KdV equations for
three-layer shallow water at the parameter values (8.22) are

(q1)T − 3u1
2h1
q1(q1)x = ν11(q1)XXX + ν12(q2)XXX

(q2)T − 3u3
2h3
q2(q2)x = ν21(q1)XXX + ν22(q2)XXX .

(8.24)

The coefficients of the nonlinearity agree with the results in Grimshaw [17]. In [17] coupled
KdV equations for the case of three layers with a rigid lid are derived and in that case
the coefficients of the nonlinearity are as in (8.24) but K 2

22 has a positive sign but Roger
Grimshaw (private communication) has confirmed that he also finds a negative sign for
K 2

22 when the upper layer is free. In [17] the coefficients of the dispersion terms in (8.24)
are also calculated, as well as unfolding terms.

9 Concluding remarks

A theory has been presented that reduces the class of PDEs (1.2), in the neighborhood of
uniform flows, to KdV, coupled KdV, or two-way Boussinesq depending on the structure of
the zero eigenvalues of the Jacobian of the flux vector. The theory is relative a fixed frame
of reference. The theory can be enriched by working relative to a moving frame. With the
shift x 7→ x− ct, the system of PDEs (1.2) becomes

Ut +
[
F(U)− cU

]
x

= DUxxx , U ∈ Rn . (9.1)

The theory then goes through with F(U) replaced by F̂(U, c) = F(U) − cU with the
additional parameter c. Criticality and double criticality are then relative to the moving
frame.

The theory in this paper is based on the class of PDEs (1.2). However, the key features
are (a) a class of uniform flows or parallel flows, (b) zero eigenvalues of the linearization
about the basic state, (c) the algebraic multiplicity and geometric multiplicity of the zero
eigenvalues, and (d) the form of the ansatz in (4.2) and (7.7). All these features should
extend with appropriate modification to other systems of PDEs including the full Euler
equations.

The theory can be extended to the case of PDEs of the type (1.2) in two space dimensions
and time. The natural extension of (1.2) is

Ut + (F(U))x + (G(U))y = D1Uxxx + D2Uxxy + D3Uxyy + D4Uyyy , U ∈ Rn ,

where F(U) and G(U) are the flux vectors in the x and y directions respectively. The con-
stant vectors U0 ∈ Rn are still exact solutions. When either of the flux vectors is degenerate
(either det[DF(U0)] = 0 or det[DG(U0)] = 0) then the strategy of this paper generalizes
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with appropriate choice of scaling and ansatz. The full details of this generalization will be
considered elsewhere, but one can speculate that this strategy will generate the Kadomtsev-
Petviashvili equation, the 2 + 1 Boussinesq equation, and other potential coupled equations
for higher order singularities.

The interest in the reduction of (1.2) or the full Euler equations to the two-way Boussinesq
or coupled KdV is that the reduced equations are easier to analyze and their range of solutions
give clues to related solutions in the full system. For example the 2-way Boussinesq equation
has a vast range of interesting solutions: solitary wave solutions, has blow-up for some initial
data and global existence for other initial data, and it is known to be completely integrable,
and has a vast range of multi-pulse and multi-periodic solutions (e.g. [7, 8, 34, 24]). Similarly
the coupled KdV equation is known to have a wide range of solitary wave solutions [19].

If DF(U0) has a zero eigenvalue of multiplicity N with N linearly independent eigenvec-
tors, then the theory of §7 can be generalized to show that N coupled KdV equations arise
in the weakly nonlinear problem. However, the number of independent parameters required
becomes large. However, the case of three coupled KdV equations are of interest and have
been analyzed in the literature [35]. A more interesting problem is when the geometric mul-
tiplicity is less than the algebraic multiplicity. For example when the algebraic multiplicity
is three and geometric multiplicity is two, then the theory here suggests that the weakly
nonlinear problem will have a two-way Boussinesq equation coupled to a KdV equation.
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— Appendix —

A Normalization of generalized eigenvectors

There is a subtlety in the normalisation of generalised eigenvectors and so the necessary the-
ory is recorded here. Consider a general (non-symmetric) n×n matrix A with characteristic
polynomial

∆(λ) = det
[
A− λI

]
= 0 .

Suppose zero is an eigenvalue of algebraic multiplicity two

∆(0) = ∆′(0) = 0 and ∆′′(0) 6= 0 , (1.1)
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but the geometric multiplicity (dimension of the kernel of A) is one,

Aξ1 = 0 . (1.2)

There exists a generalised eigenvector ξ2 satisfying

Aξ2 = ξ1 . (1.3)

Since A is not symmetric, there exists adjoint eigenvectors η1 and η2 satisfying

ATη2 = 0 and ATη1 = η2 . (1.4)

Since ξ2 exists, the equation (1.3) is solvable and so

0 = 〈ATη2, ξ2〉 = 〈η2,Aξ2〉 = 〈η2, ξ1〉 ⇒ 〈η2, ξ1〉 = 0 . (1.5)

There is one other identity that follows from the definitions of the eigenvectors and adjoint
eigenvectors

〈η1, ξ1〉 = 〈η1,Aξ2〉 = 〈ATη1, ξ2〉 = 〈η2, ξ2〉 . (1.6)

We are free to fix these two inner products, so take them to be unity,

〈η1, ξ1〉 = 〈η2, ξ2〉 = 1 . (1.7)

The aim is to normalise the eigenvectors so that

〈ηi, ξj〉 = δi,j , i, j = 1, 2 . (1.8)

The tricky case is the normalisation 〈η1, ξ2〉, since in general this inner product may not be
zero.

To clarify the normalisation, it is necessary to make explicit the arbitrary constants. Let
ξ̂1 be any fixed element in the kernel of A, then

ξ1 = aξ̂1 ,

with a an arbitrary non-zero real number. Substituting into (1.3) gives

ξ2 = aξ̂2 + bξ̂1 ,

where ξ̂2 is any fixed particular solution of Aξ̂2 = ξ̂1, and b is an arbitrary (possibly zero)
real number.

Introduce a similar construction for the adjoint eigenvectors

η2 = cη̂2 ,

where c is an arbitrary non-zero real number and η̂2 is any fixed element in the kernel of
AT . Similarly

η1 = cη̂1 + dη̂2 ,

where η̂1 is any fixed particular solution of AT η̂1 = η̂2, and d is any arbitrary (possibly zero)
real number.
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At this point there are four free parameters in the construction of the eigenvectors and
adjoint eigenvectors. However, two of the parameters can be fixed by the normalisation.
Imposing (1.7) gives

1 = 〈η1, ξ1〉 = ac〈η̂1, ξ̂1〉

1 = 〈η2, ξ2〉 = ac〈η̂2, ξ̂2〉 .

These two equations give only one condition due to the equivalence (1.6). The condition

〈η̂2, ξ̂1〉 = 0 is satisfied independent of the choice of parameters, since

0 = 〈η2, ξ1〉 = ac〈η̂2, ξ̂1〉 ,

and ac 6= 0. The final normalisation is

0 = 〈η1, ξ2〉

= 〈cη̂1 + dη̂2, aξ̂2 + bξ̂1〉

= ac〈η̂1, ξ̂2〉+ bc〈η̂1, ξ̂1〉+ da〈η̂2, ξ̂2〉

= ac〈η̂1, ξ̂2〉+ b
a

+ d
c

Hence, given 〈η̂1, ξ̂2〉, choose b, d so that

bc+ ad = −(ac)2〈η̂1, ξ̂2〉 .

To summarise, once the four vectors ξ̂1, ξ̂2, η̂1, η̂2 are fixed, the four free parameters a, b, c, d
are required to satisfy

ac = 〈η̂1, ξ̂1〉−1 and bc+ ad = −(ac)2〈η̂1, ξ̂2〉 , (1.9)

resulting in the normalisation (1.8).
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