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Abstract
The multiphase Whitham modulation equations with N phases have 2N character-
istics which may be of hyperbolic or elliptic type. In this paper, a nonlinear theory
is developed for coalescence, where two characteristics change from hyperbolic to
elliptic via collision. Firstly, a linear theory develops the structure of colliding charac-
teristics involving the topological sign of characteristics and multiple Jordan chains,
and secondly, a nonlinear modulation theory is developed for transitions. The nonlin-
ear theory shows that coalescing characteristics morph the Whitham equations into
an asymptotically valid geometric form of the two-way Boussinesq equation, that is,
coalescing characteristics generate dispersion, nonlinearity and complex wave fields.
For illustration, the theory is applied to coalescing characteristics associated with the
modulation of two-phase travelling wave solutions of coupled nonlinear Schrödinger
equations, highlighting how collisions can be identified and the relevant dispersive
dynamics constructed.

Keywords Lagrangian · Averaging · Wavetrains · Jordan chains · Multisymplectic

Mathematics Subject Classification 37K58 · 70H33 · 35P30

1 Introduction

The theory of modulation, particularly Whithammodulation theory, takes the existing
nonlinear waves, such as finite-amplitude periodic travelling waves, and provides a
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framework for studying the dynamical implications of perturbing the basic proper-
ties of the nonlinear wave. In classical modulation, the properties of the basic state
(wavenumber, frequency, mean flow) are allowed to depend on space and time, and
partial differential equations (PDEs) are derived for these parameters. Study of these
PDEs then provides information about the evolution of the basic state under perturba-
tion.

Given a basic state, there are several strategies for deriving modulation PDEs (aver-
aging the Lagrangian, averaging conservation laws, geometric optics ansatz, other
ansätze). In all cases, the governing equations produced by Whitham modulation the-
ory (WMT), for a simple one-phase periodic travelling wave, can be expressed in the
canonical form

qT = �X and
∂

∂T
A (ω + �, k + q) + ∂

∂X
B(ω + �, k + q) = 0 . (1.1)

They are a pair of nonlinear first-order PDEs for the two unknowns�(X , T ), the mod-
ulation frequency, and q(X , T ), the modulation wavenumber. The parameters (ω, k)
are representative of the wavetrain fromwhich theWhithammodulation equations are
obtained, and X = εx and T = εt are slow time and space scales. The first equation
is called conservation of waves and the second is called conservation of wave action
(Whitham 1974). When the governing equations are the Euler–Lagrange equations
associated with a Lagrangian functional, the scalar-valued functions A and B are
related via

A = Lω , B = Lk . (1.2)

The functionL (ω, k) is obtained by averaging the Lagrangian evaluated on the peri-
odic travelling wave with frequency ω and wavenumber k.

The pair of quasilinear first-order equation (1.1) can be classified based on their
characteristics. TheWhithammodulation equations (WMEs) can either be hyperbolic
(real characteristics) or elliptic (complex characteristics) and the transition signals a
change of stability of the underlying periodic waves (Whitham 1965, 1974; Bridges
and Ratliff 2017, 2018). It is this change of type, and its generalization to multiphase
wavetrains, and its nonlinear implications, that are the main themes of this paper.

To identify the structure of coalescing characteristics, first consider the one-phase
case where only two characteristics exist and so coalescence is elementary. The lin-
earization of the one-phase WMEs (1.1) about the basic state, represented by (ω, k),
is

qT = �X and Aω�T + AkqT + Bω�X + BkqX = 0 , (1.3)

or, under the assumptionAω �= 0, they can be written in the standard hydrodynamical
form,

(
q
�

)
T

+ F(ω, k)

(
q
�

)
X

=
(
0
0

)
, (1.4)
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with

F(ω, k) = 1

Aω

[
0 −Aω

Bk Ak + Bω

]
. (1.5)

Here, A and B are evaluated at � = q = 0. The characteristics (eigenvalues of F)
are

c± = Ak + Bω

2Aω

± 1

Aω

√−�L , (1.6)

where

�L = AωBk − AkBω = det

[
Lωω Lωk

Lkω Lkk

]
, (1.7)

using (1.2) in the latter equality. The sign of the determinant �L , called the Lighthill
determinant (Lighthill 1967), signals whether the characteristics are real or complex,

�L < 0 �⇒ hyperbolic WMEs
�L > 0 �⇒ elliptic WMEs .

At the transition, when �L = 0, the two characteristics are equal, the Whitham
modulation equations degenerate, and a newmodulation strategy is needed. In Bridges
and Ratliff (2017), a nonlinear modulation theory is developed for the above case
within the WMEs in the case of one-phase wavetrains. It is valid near the transition
from hyperbolic to elliptic, showing that the WMEs (1.1) are replaced by

qT = �X and Aω�T + κqqX + K qXXX = 0 , (1.8)

where T = ε2t , X = ε(x − cgt), and cg is a nonlinear group velocity at the transition.
The coefficients Aω and κ are obtained from derivatives of the components of con-
servation of wave action, and the dispersion coefficientK arises due to a symplectic
Jordan chain argument. Differentiating the second equation of (1.8) with respect to
X and using the first equation reveals that it is a variant of the two-way Boussinesq
equation for q,

Aω qT T +
(
1

2
κq2 + K qXX

)
XX

= 0 . (1.9)

The coefficients in (1.8) and (1.9) are universal in the same sense that the Whitham
equations are universal—they follow from abstract properties of a Lagrangian. Exten-
sion of the derivation of (1.8) to two space dimensions and time appears in Bridges and
Ratliff (2018). The emergence of Eq. (1.9) shows that coalescing characteristics gen-
erate nonlinearity, dispersion and wave fields of greater complexity. The complexity
is due to the wide range of known localized, multi-pulse, quasiperiodic, and extreme
value solutions of the two-way Boussinesq equation.
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In order to generalize this nonlinear theory for coalescing characteristics to the case
of multiphase wavetrains, several new results are needed. The first results on non-
genericWhithammodulation theory, in the multiphase case, considered the case when
the generic WMEs have a single or double zero characteristic. In Ratliff and Bridges
(2016), it was shown that a zero characteristic in WMT leads, under re-modulation,
to Korteweg–de Vries (KdV) dynamics on a longer time scale. In Ratliff (2018a), a
double zero characteristic is re-modulated leading to dynamics governed by a two-way
Boussinesq equation.

The motivation for re-modulation, in both cases, is that a zero characteristic in the
generic WMEs suggests no dynamics, but in fact the dynamics is moved to a slower
time scale. The time scale t ∼ ε−1, in generic WMT, is replaced by t ∼ ε−2 in
Ratliff (2018a) and is replaced by t ∼ ε−3 in Ratliff and Bridges (2016). The double
zero characteristic is a special case of coalescing characteristics. It does not require the
theory of coalescing characteristicswith nonzero speeds such as the sign characteristic,
and it is codimension two.

In this paper, we are interested in the nonlinear theory near coalescing character-
istics with nonzero speed. This case is codimension one and so more likely to occur
in applications, and it requires the theory of the sign characteristic to track collisions
of characteristics. It was discovered in Bridges and Ratliff (2019) that every charac-
teristic in the Whitham theory carries a topological sign, and this sign is an important
diagnostic as only coalescing characteristics with opposite sign can change type from
hyperbolic to elliptic. In addition, several facets of the linear theory, such as inter-
twining Jordan chains, that generate the coefficient K , bring in new challenges. For
the nonlinear theory, we find that the form of the two-way Boussinesq equation (1.9)
carries over to the case of coalescing characteristics with nonzero speed, but there
is a discrepancy between the fact that (1.9) is scalar-valued but the WMEs in the
multiphase case have 2N equations. Hence, a secondary reduction of the nonlinear
equations is required. Showing that the coefficients are universal is also an order of
magnitude more difficult in this case.

The mathematics of how characteristics coalesce and change type is addressed as
follows. Firstly consider the one-phase case. The change of type of the characteristics
signals an instability of the basic state, and this linear instability is made apparent by
taking the normal mode ansatz

(
q(X , T )

�(X , T )

)
= Re

{(
q̂
�̂

)
eλT+iνX

}
, (1.10)

and substituting into (1.3) to obtain

λ = ±ic±ν= ±iν

(
Ak + Bω

2Aω

± 1

Aω

√−�L

)
. (1.11)

There are four λ-eigenvalues for fixed ν �= 0 since q̂ and �̂ are complex-valued.
An unstable exponent (Re(λ) > 0) with modulation wave number ν exists precisely
when �L > 0. As �L changes sign, the eigenvalues (1.11) change from four purely-
imaginary eigenvalues to a complex quartet as shown schematically in Fig. 1. This
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ΔL = 0ΔL < 0 ΔL > 0

Fig. 1 Collision of purely imaginary eigenvalues in the Whitham equations

type of stability transition is familiar from the theory of linear Hamiltonian systems,
as it is precisely the Hamiltonian Hopf bifurcation (van der Meer 1985), and in that
setting the collision and resulting instability occur since the eigenvalues have opposite
Krein signature (Howard 2013; van der Meer 1985). However, as shown in Bridges
and Ratliff (2019), there is no obvious symplectic structure in the Whitham theory,
and it is the sign characteristic of Hermitian matrix pencils that is operational here.
The sign characteristic has a central role in the theory of Hermitian matrix pencils
relative to an indefinite metric (see Gohberg et al. 2005 for a history and references).

The Hermitian matrix pencil structure of (1.3) is evoked by multiplying the conser-
vation of waves by Aω, assuming Aω �= 0, and combining the two equations in (1.3)
as

[
0 Aω

Aω Ak + Bω

](
�

q

)
T

+
[−Aω 0

0 Bk

](
�

q

)
X

=
(
0
0

)
. (1.12)

The two coefficient matrices are symmetric. Now the modified normal mode ansatz

(
�(X , T )

q(X , T )

)
= Re

{(
�̂

q̂

)
eiν(X+cT )

}
,

generates the following Hermitian matrix eigenvalue problem

([−Aω 0
0 Bk

]
+ c

[
0 Aω

Aω Ak + Bω

])(
�̂

q̂

)
=
(
0
0

)
. (1.13)

The theory of Hermitian matrix pencils shows that each eigenvalue of (1.13) has a sign
characteristic and a necessary condition for instability is that eigenvalues coalesce and
have opposite sign characteristic (Bridges andRatliff 2019). In the one phase case,with
just two characteristics, the sign characteristic is less interesting, and indeed trivial.
In the multiphase case, with many characteristics, the coalescence of characteristics
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may or may not lead to instability, and so the sign characteristic becomes an essential
diagnostic tool. The principal case of interest in this paper iswhen all the characteristics
are real, with only one pair, having opposite sign, undergoing a transition to instability.

The generalization of the dispersionless WMEs (1.1) to the multiphase case is

qT = �X and
∂

∂T
A(ω + �,k + q) + ∂

∂X
B(ω + �,k + q) = 0 , (1.14)

where ω, k ∈ R

N are given parameters representative of the basic state, and
q,� ∈ R

N are the vector-valued unknowns, the modulation wavenumber and fre-
quency, which depend on T = εt and X = εx . This general form of the WMEs (1.14)
covers not only multiply-periodic waves, but quasiperiodic structures, and WMEs on
pseudo-phases which model mean flow (this latter case is discussed in Sect. 3.1).
When the governing equations are the Euler–Lagrange equation associated with a
Lagrangian functional, the mappings A and B are again variations of the average
Lagrangian L (ω,k) with the properties,

A(ω + �,k + q) = DωL (ω + �,k + q) , (1.15)

and

B(ω + �,k + q) = DkL (ω + �,k + q) . (1.16)

Cross-differentiating shows that the Jacobians satisfy

DkA = (
DωB

)T
. (1.17)

This symmetry will be important for generalizing the Hermitian property of (1.13) to
the multiphase case.

Given a smooth averaged Lagrangian L , the pair of Eq. (1.14) is a closed first-
order system of PDEs for � and q with up to 2N characteristics. This formulation of
vector-valued WMEs was introduced in Ratliff (2018a, 2017a). However, multiphase
Whithammodulation theory has a rich history.MultiphaseWMEswerefirst introduced
and studied by Ablowitz and Benney (1970), in the context of scalar nonlinear wave
equations, where the appearance of small divisors was noted. For integrable systems
small divisors disappear: multiphase averaging and the Whitham equations are robust
and rigorous, and a general theory can be obtained (e.g. Flashka et al. 1980 and its
citation trail). Whitham [Whitham (1974), Sect. 14.7] includes potential variables
as additional phases (“pseudo-phases” which are included in the theory here; see
Sect. 3.1) and generates a form of multiphase modulation and applies it to wave-
mean flow interaction of Stokes water waves (Whitham 1967). Willebrand (1975)
takes multiphase modulation theory to a new level by deriving the N -phase WMEs,
for Stokes wave solutions of the water wave problem, with N arbitrary and he takes
the limit N → ∞. This theory is formal and the series are divergent and have small
divisors, but the leading order terms are instructive (see comments on this later in
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Sect. 9.7). The theory of Willebrand (1975) is now used in ocean wave forecasting
(e.g. Chapter 9 of Olbers et al. 2012).

On the other hand, when the system is not integrable, but there is an N -fold symme-
try, a theory for conservation of wave action can be developed without small divisors
and smoothly varying N -phase wavetrains. This strategy is implemented in Ratliff
(2018a, 2017a), where multiphase wavetrains are characterized as relative equilibria
with smooth dependence on parameters.

Going back to the abstract multiphase WMEs (1.14), with the symmetry property
(1.17) and the gradient properties (1.15), the linearization of (1.14) can be cast into
the form of a Hermitian matrix pencil,

[[−DωA 0
0 DkB

]
+ c

[
0 DωA

DωA DkA + DωB

]](
�̂

q̂

)
=
(
0
0

)
, (1.18)

assuming that DωA is invertible. The Jacobians DωA, DkB, DωB, and DkA, are N×N
matrices, with the first two symmetric and the latter two are thematrix transpose of one
another. The 2N×2N linear eigenvalue problem (1.18) can be reduced, by eliminating
�̂,

�̂ = ĉq , (assuming det[DωA] �= 0) , (1.19)

to an N × N quadratic Hermitian matrix pencil,

E(c)̂q:=
[
DωA c2 + c(DkA + DωB) + DkB

]
q̂ = 0 . (1.20)

A parallel theory can be developed for the sign characteristic in this context (Gohberg
et al. 1980; Mehrmann et al. 2016; Tisseur and Meerbergen 2001). Suppose c0 is a
simple real eigenvalue satisfying det[E(c0)] = 0 with eigenvector ζ , so that

E(c0)ζ = 0 . (1.21)

Then, the sign characteristic of c0 is

S(c0) = sign
(〈
ζ ,E′(c0)ζ

〉)
, (1.22)

where 〈·, ·〉 is an inner product on R

N , and the prime denotes differentiation with
respect to c. A discussion of the history and various formulations of the sign charac-
teristic is given in Bridges and Ratliff (2019). The sign characteristic is invariant under
congruence transformation, E(c0) �→ PTE(c0)P, for any invertible P (Gohberg et al.
1980). The quadratic formulation (1.20), rather than its linearization (1.18), turns out
to be the most efficient in applications and arises naturally in the modulation theory.

Starting with the quadratic Hermitian matrix pencil (1.20) a theory for the sign
characteristic in the context of Whitham modulation theory is developed by Bridges
and Ratliff (2019). The 2N characteristics of the linearized problem satisfy

�(c):=det[E(c)] = 0 . (1.23)
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Double non-semisimple characteristics, which characterize coalescence, and define
the nonlinear group velocity cg , satisfy

�(cg) = �′(cg) = 0 but �′′(cg) �= 0 , (1.24)

with a single geometric eigenvector

E(cg)ζ = 0 , (1.25)

and generalized eigenvector

E(cg)γ = −E′(cg)ζ . (1.26)

Solvability of (1.26) defines cg . All these properties follow from the structure of the
linear operator E(c) with c ∈ R and are studied in Bridges and Ratliff (2019) and the
details required here are recorded in Sect. 4 and their role in the Jordan chain theory
is developed in Sect. 6.

When multiphase modulation is introduced for the nonlinear problem, with an
appropriate scaling, the vector-valued conservation of wave action (1.14) will be mor-
phed into another form with dispersion. It will however still have dimension N , so a
further reduction is necessary in order to obtain a generalization of (1.9). The strategy
is to splitRN = span{ζ }⊕R

N−1. The geometric eigenvector ζ , defined in (1.21), pro-
vides a preferred direction in q-wavenumber space associated with the coalescence.
This preferred direction is an essential part of the nonlinear modulation theory. It
provides a projection operator so that the vector-valued conservation of wave action
(1.14) can be reduced to a scalar equation, and this scalar equation, which also requires
a rescaling of the slow variables, and extension of the analysis to fifth order in ε, is a
geometric form of the scalar-valued two-way Boussinesq equation

μUTT + 1

2
κ(U 2)XX + K UXXXX = 0 , (1.27)

where μ and κ are determined by the geometry of the averaged Lagrangian L (ω,k)

and K is determined by a twisted Jordan chain argument.
The geometry ofL (ω,k) is discussed in Sect. 2.2. The most remarkable outcome

of the geometry is that the coefficient κ in (1.27) has the simple formula

κ:= d3

ds3
L (ω + scgζ ,k + sζ )

∣∣∣∣
s=0

. (1.28)

The coefficient μ is determined by a Jordan chain associated with the linear operator
E(cg) in (1.25). Indeed, μ �= 0 is the condition required for termination of the Jordan
chain (ζ , γ ) in (1.25)–(1.26). A different Jordan chain, associated with the lineariza-
tion of the Euler–Lagrange equations [denoted L in (2.9)], determines the dispersion
coefficient K . This latter Jordan chain argument is similar to the case of multiphase
modulation associated with zero characteristics in Ratliff (2018a, 2017a); Ratliff and
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Bridges (2016) but here the Jordan chain intertwines two different chains generated
by L. The nonlinear modulation theory where (1.28) arises naturally and feeds into
the emergence of (1.27) is developed in Sect. 5.

The starting point for the theory is a general class of nonlinear PDEs generated
by a Lagrangian, and this class is introduced in Sect. 2. Given a basic multiphase
wavetrain Ẑ(θ ,ω,k), with phase θ = kx + ωt + θ0 and vector-valued frequency and
wavenumberω,k, satisfying the Euler–Lagrange equations, the dispersionless vector-
valuedWMEs (1.14) are derived by modulating the basic state with a geometric optics
scaling (Ratliff 2017a, 2018a; Bridges and Ratliff 2019). The appropriate modulation
ansatz is

Z(x, t) = Ẑ(θ + ε−1φ,ω + �,k + q) + εW (θ + ε−1φ, X , T , ε) , (1.29)

where φ, ω and q, depending on T = εt and X = εx , are the modulated phase,
frequency and wavenumber, and W is a remainder. Substitution of (1.29) into the
Euler–Lagrange equation and solvability requires q and � to satisfy (1.14) to leading
order (Ratliff 2017a, 2018a).

When two characteristics, of opposite sign characteristic, coalesce and transition
to instability, the geometric optics modulation ansatz

θ �→ θ + ε−1φ , ω �→ ω + � , k �→ k + q ,

(with T = εt and X = εx) in (1.29) must be replaced. The altered form utilized is

θ �→ θ + ε� , k �→ k + ε2�X , ω �→ ω + ε2cg�X + ε3�T , (1.30)

where � is a function of the slow time and space variables,

X = ε(x + cgt) , T = ε2t , (1.31)

with cg determined as part of the analysis, and εmeasuring the distance in (ω,k)-space
from the singularity (1.24). The new ansatz at coalescence is

Z(x, t) = Ẑ(θ + ε�,ω + ε2cg�X + ε3�T ,k + ε2�X ) + ε3W (θ , X , T , ε) .

(1.32)

Finer detail on the ansatz, including definitions of q and� and their relation to�X and
�T is given in Sect. 5. Substitution of this ansatz into the governing Euler–Lagrange
equations, expanding everything in powers of ε, and setting order by order to zero,
results, by imposing a solvability condition, in a vector-valued two-way Boussinesq
equation induced by conservation of wave action. The projection operator, defined
usingKer(E(cg)), is then implemented to split the conservation ofwave action into two
parts, one generating the two-wayBoussinesq equation (1.27)with the complementary
part carrying over to higher order.
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The paper has four parts: the Lagrangian (geometry, analysis, and Euler–Lagrange
equation), the linear theory (for both operators E(c) and L), the nonlinear modulation
analysis [implementing the ansatz (1.32)], and an illustrative example.

In Sect. 2 a class of Lagrangian functionals and a class of basic states is introduced.
In Sect. 2.2 the geometry of the mapping (ω,k) �→ L (ω,k), where L (ω,k) is the
Lagrangian evaluated on a basic state, is studied. Remarkably, many of the features
of the linear problem as well as the nonlinear modulation are determined by the
geometry of this scalar-valued function. We end this discussion by reviewing the
Whitham modulation theory from a geometric perspective in Sect. 3 to demonstrate
how the characteristics and their coalescence may be formulated using these notions,
as discussed in Sect. 4. In Sect. 3.1, we show how the theory of pseudo-phases, and
their relation with mean flow, fits into the theory of this paper.

The linear theory has two parts: the structure of the linear operator E(c) in (1.20),
including the Jordan chain theory in the setting of the quadratic eigenvalue problem
(1.20). This theory is developed in Sects. 2.2 and 6, and appeals to the theory of sign
characteristic for Hermitian matrix pencils developed in Bridges and Ratliff (2019).
The second part of the linear theory is the linearization of theEuler–Lagrange equation,
which is needed to develop a secondary Jordan chain needed for constructing the
dispersion coefficient K and the nonlinear modulation theory, and this theory is
developed in Sect. 6.

The nonlinear theory is developed in Sect. 5. Although the ansatz (1.32) with
(1.30) is new, once the ansatz is identified the strategy is similar to our previous
papers, particularly Bridges and Ratliff (2017) and Ratliff and Bridges (2016), and so
only the key new features are highlighted. The theory is illustrated by application to
the two-phase travelling wave solutions of a class of coupled nonlinear Schrödinger
(CNLS) equations. In Bridges and Ratliff (2019), it was shown that these travelling
wave solutions have coalescing characteristics with transition to instability. Here, the
theory is applied to show the emergence of a geometric two-way Boussinesq equation
at these singularities. Potential generalizations are discussed in the concluding remarks
section.

2 The Lagrangian and Governing Equations

The theory is built on a general class of Lagrangian functionals

L(V ) =
∫ t2

t1

∫ x2

x1
L(V , Vt , Vx , . . .) dxdt ,

whereV (x, t) is a vector-valued smoothfield defined on the rectangle [x1, x2]×[t1, t2].
The lower dots indicate that the Lagrangian may also depend on higher derivatives of
V , and the subsequent theory can be adapted for these cases. Potential variables are
included by letting some components of V appear in L(·) with derivatives only (see
discussion in Sect. 3.1 of pseudo-phases associated with potential variables).

Normally a non-degeneracy condition on derivatives of L with respect to Vt and
Vx is assumed, but here these conditions are circumvented by assuming up front that
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the Lagrangian has been transformed to standard multisymplectic form

L(Z) =
∫ t2

t1

∫ x2

x1

[
1

2
〈MZt , Z〉 + 1

2
〈JZx , Z〉 − S(Z)

]
dxdt , (2.1)

where Z ∈ R

n ,M and J are skew-symmetric matrices, S : R

n → R is a given smooth
function, and 〈·, ·〉 is a standard inner product on R

n . For definiteness, n is taken to be
even and

det
[
J + cM

] �= 0 , ∀ c ∈ C ⊂ R , (2.2)

where C is some open set of real numbers. Examples with n = 4 for M and J
include the dispersive shallow water equations (Bridges 2017, 2013),

M =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , and J =

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

which has C = R, and the coupled-mode equation (also massive-Thirring equa-
tion),

M =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ and J =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

with an appropriate choice of S(Z) in both cases. The latter case has C = R\{±1},
since det[J + cM] = (c2 − 1)2. These examples and others can be found in Bridges
and Derks (2001), Bridges et al. (2010), Bridges (2013, 2017).

The Euler–Lagrange equation associated with (2.1) is

MZt + JZx = ∇S(Z) , Z ∈ R

n . (2.3)

The theoretical developments to follow are based on this abstract form of the Euler–
Lagrange equation, withM, J general skew-symmetric matrices satisfying (2.2), and
n even with n ≥ 2N .

2.1 Symmetry, Relative Equilibria and the Basic State

The easiest way to generate smooth families of multiphase wavetrains is to consider a
Lagrangian that is invariant under the action of a Lie group. Here, and henceforth it is
assumed that the Lie group is abelian, and some combination of S1 (associated with
periodic wavetrains), and affine translations. Affine translations, which are associated
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with pseudo-phases, are captured in the formulation (2.3) by

〈e j ,∇S(Z)〉 = 0 , j = 1, . . . , P ,

where P is the dimension of the affine symmetry group, and e j ∈ R

n are the generators.
The theory will be developed for the case of the N -torus, which is appropriate for
periodic N -phase wavetrains, as the affine translation group is much simpler and the
necessary changes will be recorded when needed.

Assume that (2.3) is equivariant with respect to an N -torus, T

N = (S1)N , with
matrix representation Gθ (an n × n orthogonal matrix) and θ = (θ1, . . . , θN ). The
infinitesimal generators are

g j (Z):= ∂

∂θ j
Gθ Z

∣∣∣∣
θ=0

, j = 1, . . . , N . (2.4)

SinceGθ is orthogonal the action of g j on Z is a skew-symmetricmatrix. Equivariance
of (2.3) then follows from the requirements

GθM = MGθ , GθJ = JGθ , and S(Gθ Z) = S(Z) , ∀ Gθ ∈ T

N . (2.5)

The basic state, namely the solution that will be modulated, is taken to be a family
of periodic N -phase wavetrains of the form

Z(x, t) = Ẑ(θ ,k,ω) , θ = kx + ωt + θ (0) , (2.6)

with the basic state (2.6) 2π -periodic in each component of θ , θ (0) ∈ R

N a constant,
and

θ =
⎛
⎜⎝

θ1
...

θN

⎞
⎟⎠ , k =

⎛
⎜⎝
k1
...

kN

⎞
⎟⎠ , ω =

⎛
⎜⎝

ω1
...

ωN

⎞
⎟⎠ .

Substitution of Ẑ into (2.3) admits the governing equation for the N -phase wavetrain

N∑
j=1

(
ω jM + k jJ

)
∂θi Ẑ = ∇S(Ẑ) . (2.7)

In the absence of symmetry, solutions of this problem may encounter small divisors.
The advantage of the T

N -symmetry of (2.3) is that multiphase wavetrains are smooth
functions with no small divisors: the wavetrain is a multiparameter family of relative
equilibria. The relative equilibrium structure of the basic state (2.6) then gives

Ẑ(θ ,ω,k) = Gθ ẑ(ω,k) with Ẑθ j = Gθg j (̂z) , j = 1, . . . , N . (2.8)
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All the dynamics is in the group action. The vector ẑ(ω,k) can be thought of as the
reference point along the group orbit, and satisfies

N∑
j=1

(
ω jM + k jJ

)
g j (̂z) = ∇S(̂z) .

2.1.1 Linearization About a Multiphase Wavetrain

Associated with (2.7) is the linear operator

LV = D2S(Ẑ)V −
N∑
j=1

(
ω jM + k jJ

)
∂θ j V . (2.9)

This operator is formally self-adjoint with respect to the inner product

〈〈·, ·〉〉 =
(

1

2π

)N ∫ 2π

0
· · ·
∫ 2π

0
〈·, ·〉 dθ1 · · · dθN :=

∫
TN

〈·, ·〉 dθ . (2.10)

Differentiation of (2.7) with respect to each θi and each of the four parameters ki , ωi

leads to the equations

LẐθi = 0 ,

LẐki = JẐθi ,

LẐωi = MẐθi , i = 1, . . . , N .

(2.11)

The first of these equations highlights the fact that the kernel of L is at least N -
dimensional, and in this paper, it is assumed no larger, so that

Ker(L) = span
{
Ẑθ1 , . . . , ẐθN

}
. (2.12)

The other equations in (2.11) will become significant when the Jordan chain theory
in a moving frame is developed. The assumption (2.12) along with the formal self-
adjointness of L give the solvability conditions for an expression F to lie within the
range of L as

LW = F ⇔ 〈〈Ẑθ1 , F〉〉 = · · · = 〈〈ẐθN , F〉〉 = 0 . (2.13)

2.1.2 Multisymplectic Noether Theory

In the Lagrangian setting, the symmetry induces conservation laws via Noether theory.
Transforming to a multisymplectic formulation then induces multisymplectic Noether
theory which relates the structure operators J andM to the components of the induced
conservation laws. Although these conservation laws may have other physical signif-
icance, they play the role of conservation of wave action in the Whitham theory and
so the components will be called wave action and wave action flux.
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There is a conservation law associated with each phase of the wavetrain, and mul-
tisymplectic Noether theory implies the existence of functions A j , Bj satisfying

Mg j (Z) = ∇A j (Z) , Jg j (Z) = ∇Bj (Z) , j = 1, . . . , N , (2.14)

and so

A j (x, t) =
∫
TN

〈Mg j Z , Z〉 dθ , Bj (x, t) =
∫
TN

〈Jg j Z , Z〉 dθ ,

where Z(x, t, θ) is a function of (x, t) and the phases θ = (θ1, . . . , θN )which are here
interpreted as ensemble parameters. Direct calculation verifies that the conservation
laws are

∂t A j + ∂x B j = 0 , j = 1, . . . , N , (2.15)

whenever Z satisfies (2.3).
The components of the conservation laws can also be deduced directly from the

averaged Lagrangian. The Lagrangian (2.1), evaluated on the N -phase wavetrain and
averaged, is

L (ω,k) =
∫
TN

⎡
⎣ N∑

j=1

[
1

2
ω j 〈Ẑ ,MẐθ j 〉 + 1

2
k j 〈Ẑ , JẐθ j 〉

]
− S(Ẑ)

⎤
⎦ dθ . (2.16)

The wave action vector evaluated on the wavetrain is

A(ω,k) =
⎛
⎜⎝
A1
...

AN

⎞
⎟⎠ := DωL =

⎛
⎜⎝
Lω1

...

LωN

⎞
⎟⎠ = 1

2

⎛
⎜⎝

〈〈MẐθ1 , Ẑ〉〉
...

〈〈MẐθN , Ẑ〉〉

⎞
⎟⎠ , (2.17)

and the wave action flux vector is

B(ω,k) =
⎛
⎜⎝
B1
...

BN

⎞
⎟⎠ := DkL =

⎛
⎜⎝
Lk1

...

LkN

⎞
⎟⎠ = 1

2

⎛
⎜⎝

〈〈JẐθ1 , Ẑ〉〉
...

〈〈JẐθN , Ẑ〉〉

⎞
⎟⎠ . (2.18)

By definition, we have the following

DωA =
⎛
⎜⎝

∂k1A1 · · · ∂kNA1
.
.
.

. . .
.
.
.

∂k1AN · · · ∂kNAN

⎞
⎟⎠ ,

DkA =
⎛
⎜⎝

∂k1A1 · · · ∂kNA1
.
.
.

. . .
.
.
.

∂k1AN · · · ∂kNAN

⎞
⎟⎠ = DωBT , and DkB =

⎛
⎜⎝

∂k1B1 · · · ∂kNB1
.
.
.

. . .
.
.
.

∂k1BN · · · ∂kNBN

⎞
⎟⎠ .
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The entries of these tensors are related to solutions via

∂ω jAi = 〈〈MẐθi , Ẑω j 〉〉 , (2.19a)

∂k jAi = 〈〈MẐθi , Ẑk j 〉〉 , (2.19b)

∂k jBi = 〈〈JẐθi , Ẑk j 〉〉 , (2.19c)

∂k j kmBi = 〈〈JẐθi km , Ẑk j 〉〉 + 〈〈JẐθi , Ẑk j km 〉〉 , i, j,m = 1, . . . , N . (2.19d)

The definition of the wave action and wave action flux in terms of derivatives of the
averaged Lagrangian induces symmetry of the Jacobians,

∂kiB j = 〈〈JẐθ j , Ẑki 〉〉 = 〈〈LẐk j , Ẑki 〉〉 = 〈〈Ẑk j ,LẐki 〉〉 = 〈〈Ẑk j , JẐθi 〉〉 = ∂k jBi

(2.20)

and

∂k jAi = 〈〈MẐθi , Ẑki 〉〉 = 〈〈Ẑωi , JẐk j 〉〉 = ∂ωiB j , i, j = 1, . . . , N .

The key property in both (2.17) and (2.18) is that the left-hand side is in terms of the
functions of (ω,k) only and the right-hand side is expressed in terms of the properties
of the Euler–Lagrange equation (2.3), namely through the structure matrices J andM.
It is this connection that is the essence of multisymplectic Noether theory, and it feeds
into the nonlinear modulation theory.

2.2 Geometry of the Averaged Lagrangian

Many of the properties needed in the modulation theory can be deduced from the
abstract mapping

(ω,k) �→ L (ω,k) , (2.21)

whereL : R

N × R

N → R is the averaged Lagrangian (2.16) and is assumed to be a
smooth function.

The wave action and wave action flux emerge from L via

d

ds
L (ω + su,k + sv)

∣∣∣
s=0

= 〈A(ω,k),u〉 + 〈B(ω,k), v〉 , for any u, v ∈ R

N ,

where 〈·, ·〉 is an inner product on R

N . The second derivative can be used to generate
the linear operator E(c). First set u = cv in the above expression and look at the
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derivative

d2

ds2
L (ω + scv,k + sv)

∣∣∣
s=0

= d

ds
〈A(ω + scv,k + sv), cv〉

∣∣∣
s=0

+ d

ds
〈B(ω + sv,k + sv), v〉

∣∣∣
s=0= 〈DωA(ω,k)cv, cv〉 + 〈DkA(ω,k)v, cv〉

+〈DωB(ω,k)v, v〉 + 〈DkB(ω,k)v, v〉
=
〈(
DωAc2 + (DkA + DωB)c + DkB

)
v, v

〉
= 〈E(c)v, v〉 , for any v ∈ R

N .

Hence,

E(c)v = d

ds
[cA(ω + csv,k + sv) + B(ω + csv,k + sv)]

∣∣∣∣
s=0

. (2.22)

The most remarkable result following from derivatives of L is the expression for
κ , the coefficient of nonlinearity in the emergent two-way Boussinesq equation (1.27).
Introduce the one parameter path inL (ω,k),

F(s) = L (ω + scgζ ,k + sζ ) ,

with cg here considered as fixed, and ζ ∈ Ker(E(cg)). Then, differentiating and using
(1.15) and (1.16) gives

F ′(s) = 〈A(ω + scgζ ,k + sζ ), cgζ 〉 + 〈B(ω + scgζ ,k + sζ ), ζ 〉
F ′′(s) = 〈DωA(ω + scgζ ,k + sζ )cgζ , cgζ 〉 + 〈DkA(ω + scgζ ,k + sζ )ζ , cgζ 〉

+〈DωB(ω + scgζ ,k + sζ )cgζ , ζ 〉 + 〈Bk(ω + scgζ ,k + sζ )ζ , ζ 〉 .

(2.23)

Evaluating F ′′(0),

F ′′(0) = 〈c2gDωAζ , ζ 〉 + 〈cgDkAζ , ζ 〉 + 〈cgDωBζ , ζ 〉 + 〈Bkζ , ζ 〉 = 〈E(cg)ζ , ζ 〉 = 0 .

However, it is the third derivative of F(s) that is of most interest. The formula for
F ′′(s) suggests that F ′′′(s) is a derivative of a path through the linear operator E(cg),
considered as a function of (ω,k) with cg fixed. Differentiating,

F ′′′(0) := d3

ds3
L (ω + scgζ ,k + sζ )

∣∣∣∣
s=0

=
〈
ζ ,
(
D2
kB + cg(2DkDωB + D2

kA) + c2g(2DkDωA + D2
ωB) + c3gD

2
ωA
)
(ζ , ζ )

〉
:= κ .

(2.24)

At this point, this expression is just a formula, but the inner product in the second
row will emerge naturally in the modulation theory in a solvability condition, giving it
relevance as the coefficient of the nonlinear term in the emergent modulation equation.
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In a similar way, the coefficient μ in (1.27) can also be represented in terms of
derivatives of L as in

μ = d2

ds2
L (ω + sζ ,k)

∣∣∣∣
s=0

+ d2

ds2
L (ω + scgγ ,k + sγ )

∣∣∣∣
s=0

. (2.25)

However, a more interesting characterization of μ is as a termination condition for the
Jordan chain (ζ , γ ) in (1.25)–(1.26) [see Eqs. (4.9) and (4.10)].

3 Generic MultiphaseWhitham Equations

In this section, a constructionof the generic (distinct characteristics)multiphaseWMEs
is sketched from the paper’s geometric perspective. It serves as a touchstone for the
modifications needed for the non-generic (coalescing characteristics) case, and the
generic theory is needed to define cg , the frame speed at coalescence.

Given the basic state Ẑ in (2.6), with N phase variables θ j , the generic WMEs are
obtained using the geometric optics ansatz (Ratliff 2017a, 2018a),

Z(x, t) = Ẑ(θ + ε−1φ,ω + �,k + q) + εW (θ + ε−1φ, X , T , ε) (3.1)

with X = εx and T = εt , and the N -dimensional vectors φ, �, and q depending on
X , T and satisfying conservation of waves qT = �X . Expand all terms in a Taylor
series, e.g.W = W1+O(ε), substitute into (2.3) and solve the equations at each order
of ε. At zeroth order the governing equations for the basic wave Ẑ are recovered and
at first order an equation for W1 is obtained

LW1 =
N∑
j=1

[
∂T� jMẐω j + ∂T q jMẐk j + ∂X� jJẐω j + ∂Xq jJẐk j

]
.

Applying the solvability conditions (2.13), and using the connection between the
resulting expressions and the components of the conservation law (2.19a)–(2.19c),
i.e.

〈〈Ẑθi ,MẐω j 〉〉 = −∂ω jAi , 〈〈Ẑθi , JẐk j 〉〉 = −∂k jAi ,

〈〈Ẑθi , JẐω j 〉〉 = −∂kω jBi , 〈〈Ẑθi , JẐk j 〉〉 = −∂k jBi , i, j = 1, . . . , N ,

then gives the generic WMEs,

0 =
N∑
j=1

[
∂T� j∂ω jAi + ∂T q j∂k1Ai + ∂X� j∂ω jBi + ∂Xq j∂k jBi

]
, i = 1, . . . , N .

Taking into account that Ẑ is a function of k+q and ω +�, averaging over the phase
eliminates the ε−1φ terms, and using the vector definition of wave action (2.17) and
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wave action flux (2.18), these two equations are the vector conservation equation

∂TA(k + q,ω + �) + ∂XB(k + q,ω + �) = 0 , (3.2)

which, when combined with conservation of waves and the symmetry condition

∂Tq = ∂X� and DkA = (
DωB

)T
, (3.3)

give the generic WMEs in vector form. Further details of the above derivation can
be found in Ratliff (2017a, 2018a). A proof of validity of these multiphase WMEs,
when the original equation is coupled NLS, covering both the cases of elliptic and
hyperbolic characteristics, in the context of coupled nonlinear Schrödinger equations,
is given in Bridges et al. (2020).

Consider the linearization of (3.2) and (3.3) at (ω,k)

DωA�T + DkAqT + DωB�X + DkB qX = 0 and �X = qT . (3.4)

Characteristics about any state (ω+�,k+q) can be obtained the same way, but here
the main interest is in characteristics in the neighbourhood of the basic state. Differ-
entiating the first equation and using the second results in a second-order equation for
q,

DωAqT T + (
DkA + DωB

)
qT X + DkB qXX = 0 .

With the normal mode ansatz

(�,q) = (�̂, q̂)eiα(X+cT ) ,

the second-order equation results in a quadratic equation for the characteristics,

E(c)̂q:=
[
DωA c2 + (DkA + DωB)c + DkB

]
q̂ = 0 . (3.5)

It is a Hermitian quadratic matrix polynomial, and there is an extensive literature
on the properties of these matrices (e.g. Gohberg et al. 1980; Tisseur and Meerbergen
2001; Mehrmann et al. 2016 and references therein).

A key property that we will need is that a simple root, say c0, has a “sign charac-
teristic”. A necessary condition for two characteristics to coalesce and transition from
hyperbolic to elliptic is that they have opposite sign characteristic. A study of the sign
characteristic in the context of the linearized multiphase WMEs is given in Bridges
and Ratliff (2019), and the basics of the theory needed here is given in Sect. 4.

3.1 Pseudo-Phases and Affine Symmetry

The basic states considered in Sect. 2.1 are 2π -periodic in each phase (2.6). There are
also pseudo-phases. In this section, it is shown that pseudo-phases can be treated the
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same as phases associated with periodic motion, noting only that no averaging over
pseudo-phases is required. A group-theoretic interpretation of pseudo-phases is also
given.

The concept of pseudo-phases was introduced by Whitham in his first papers on
modulation (e.g. Whitham 1965, 1967) and discussed in more detail in Sect. 14.6 in
Whitham (1974). The associated pseudo frequencies and pseudo wavenumbers play
a role in mean flow.

Consider one of the most well-known examples of pseudo-phases; that is, mean
flow in the water wave problem, using the simplified model,

ht + uhx + hux = 0 and ut + uux + ghx = σhxxx , (3.6)

where h(x, t) is the fluid depth, u(x, t) is the horizontal velocity field, and σ is a
parameter. Let u = φx , and then the Lagrangian variational principle that generates
(3.6) is

δ

∫ t2

t1

∫ x2

x1
L(φt , φx , ht , hx , h) dxdt = 0 ,

with

L(φt , φx , ht , hx , h) = hφt + 1

2
hφ2

x + 1

2
gh2 + 1

2
σh2x . (3.7)

The key property is that the Lagrangian is invariant if a constant is added to φ. This
is an affine symmetry, the abstract group is the group of real numbers, and the action
is

s · (h, φ) = (h, φ + s) , ∀s ∈ R .

This affine symmetry is reminiscent of “cyclic variables” in classical mechanics.
When we introduce a pseudo-phase associated with this group, s = βx + γ t , the

pseudo-phase does not appear explicitly in the Lagrangian and so averaging is not
required. However, we will see that a modulation equation is still generated of the
same mathematical form. Let

φ = βx + γ t , (3.8)

and substitute into (3.7),

L (h, β):=L(γ, β, 0, 0, h) = γ h + 1

2
hβ2 + 1

2
gh2 . (3.9)

Although no averaging is required, Whitham modulation theory proceeds in the
same way. Suppose β(X , T ) and γ (X , T ) are taken to depend on slow time and space
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variables. Then, the WMEs associated with the single pseudo-phase are

βT = γX and
∂

∂T

(
∂L

∂γ

)
+ ∂

∂X

(
∂L

∂β

)
= 0 , and

∂L

∂h
= 0 . (3.10)

Differentiating L and substituting gives

βT = γX and
∂

∂T
(h) + ∂

∂X
(βh) , and γ + 1

2
β2 + gh = 0 .

Substituting the third into the first, we get two equations

βT + ββX + ghX = 0 and hT + βhX + hβX = 0 . (3.11)

The upshot here is twofold, the introduction of a pseudo-phase does not require
averaging, and the resulting modulation equations are mathematically the same as the
case of modulation of periodic waves.

Here, we have the added outcome thatWhitham theory applied to the pseudo-phase
(3.8) results in the classical shallow water equation (3.11), with β(x, t) representing
the horizontal velocity. If we add in a periodic phase as well, replacing (3.8) with

φ(x, t) = βx + γ t + �(θ) , θ = kx + ωt ,

where � is 2π -periodic, and substitute into the Lagrangian, then averaging would be
required but only over the periodic phase. Modulating ω(X , T ) and k(X , T ), leads to
the WMEs associated with the periodic phase

kT = ωX and
∂

∂T

(
∂L

∂ω

)
+ ∂

∂X

(
∂L

∂k

)
= 0 , and

∂L

∂E
= 0 , (3.12)

where E is representative of the amplitude. Combining (3.10) and (3.12) results in
coupled multiphase modulation equations with the same mathematical form as if both
phases were periodic. Indeed, this is precisely what was done in Whitham (1967).

By eliminating the amplitudes in (3.10) and (3.12) and relabelling γ = ω1, β = k1,
ω = ω2, and k = k2, the coupled multiphase modulation equations associated with
pseudo-phase or phase take the same canonical form as (3.2) and (3.3). Hence, the
theory of this paper for multiphase Whitham modulation theory, including the theory
for coalescing characteristics, applies to both periodic phases and pseudo-phases.
Henceforth, the results will be stated for the periodic case and can easily be adjusted
for pseudo-phases.

4 Defining Characteristics and Coalescence

In this section, the algebraic structure of the quadratic Hermitian matrix pencil E(c)
in (3.5) is discussed. Characteristics of the linearized WMEs (3.4) are the values of c
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that are roots of the polynomial

�(c): = det[E(c)] = 0 . (4.1)

When there are N -phases, this polynomial has degree 2N . The linear algebra of
quadratic Hermitian matrix pencils can be found in Gohberg et al. (1980), Mehrmann
et al. (2016), Tisseur and Meerbergen (2001) and references therein. Here, a theory
for the sign characteristic of simple roots and the theory of double non-semisimple
roots is required.

For definiteness, we assume that all the characteristics are hyperbolic and one pair
transitions from hyperbolic to elliptic at some parameter value. It is not essential to the
nonlinear theory for the other 2(N − 1) characteristics to be hyperbolic at coalescence,
although if they are not hyperbolic then the basic state is already unstable.

A characteristic is double when

�(cg) = �′(cg) = 0 and �′′(cg) �= 0 , (4.2)

where �(c) is defined in (4.1). The value of c at the collision is denoted by c = cg
in anticipation of the connection with the concept of group velocity.

The conditions (4.2) tell us that the algebraicmultiplicity of cg is two. ForHermitian
matrices the geometric multiplicity would also be two. However, Hermitian matrix
pencils, in the indefinite case, can have non-trivial Jordan chains (Gohberg et al. 2005).
This property also carries over to Hermitian quadratic matrix polynomials (Gohberg
et al. 1980). Here, we are interested in the case where the geometric multiplicity of
E(cg) is one

Ker
(
E(cg)

) = span{ζ } . (4.3)

To establish a Jordan chain, first look at the condition �′(cg) = 0 in terms of the
properties of E(c),

�′(cg) = d

dc
det[E(c)]

∣∣∣
c=cg

= Tr
(
E(c)#E′(c)

)∣∣∣
c=cg

,

where E(c)# is the adjugate (Magnus and Neudecker 1988). Now use the fact that
E(cg) has rank one and the nonzero eigenvalue is Tr(E(cg)),

E(cg)
# = Tr(E(cg))

‖ζ‖2 ζζ T .

This formula can be verified by direct calculation (see also Magnus and Neudecker
1988). Then,

�′(cg) = Tr
(
E(c)#E′(c)

)∣∣∣
c=cg

= Tr(E(cg))

‖ζ‖2 〈ζ ,E′(cg)ζ 〉 ,
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and so with the assumption (4.3),

�′(cg) = 0 ⇐⇒ 〈ζ ,E′(cg)ζ 〉 = 0 . (4.4)

Now look at this condition from the viewpoint of solvability, as that is how it will
arise in the nonlinear modulation theory. In the case of algebraic multiplicity two and
geometricmultiplicity one, a Jordan chain for a quadraticHermitianmatrix polynomial
has the form

E(cg)ζ = 0 and E(cg)γ = −E′(cg)ζ , (4.5)

for some γ ∈ R

N , if it exists (Gohberg et al. 1980). Since E(cg) is Hermitian (in
this case real and symmetric), the solvability condition is 〈ζ ,E′(cg)ζ 〉 = 0 confirming
(4.4). Writing out this condition,

0 = 〈ζ ,E′(cg)ζ 〉 = 〈ζ ,
(
2cgDωA + (DωB + DkA)

)
ζ 〉 , (4.6)

gives a defining equation for cg

cg = −1

2

〈ζ ,
(
DkA + DωB

)
ζ 〉

〈ζ ,DωAζ 〉 . (4.7)

Noting that DωB = (DkA)T , this formula simplifies to

cg = −〈ζ ,DkAζ 〉
〈ζ ,DωAζ 〉 . (4.8)

The notation cg is used as the derivative with respect to k over a derivative with respect
to ω is reminiscent of the classical definition of group velocity.

Termination of the chain (4.5) at length two is assured if the following equation

E(cg)ϒ = −E′(cg)γ − 1

2
E′′(cg)ζ , (4.9)

is not solvable; that is

μ:=〈ζ ,E′(cg)γ + 1

2
E′′(cg)ζ 〉 = 1

2
〈ζ ,E′′(cg)ζ 〉 − 〈γ ,E(cg)γ 〉 �= 0 , (4.10)

where (4.5) has been used. This expression is called μ as another remarkable result in
the nonlinear theory is that this coefficient is precisely the μ that appears as the coef-
ficient of UTT in the emergent two-way Boussinesq equation (1.27). This connection
will emerge in the nonlinear modulation theory.

Further properties of this Jordan chain, and the Jordan chains associated with the
linear operatorL are discussed in more detail in Sect. 6, after the nonlinear modulation
theory is introduced.
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5 Nonlinear Modulation at Coalescence

For the nonlinear modulation near coalescing characteristics, the strategy is to intro-
duce the ansatz (1.32), substitute into the Euler–Lagrange equation (2.3), expand
everything in powers of ε, and set terms proportional to each order in ε to zero. The
key step here is identifying the form of the ansatz. The role of frame speed is inspired
by the one-phase case in Bridges and Ratliff (2017), and the role of additional phase
functions ψ and δ is inspired by Ratliff (2018a). These are included in the ansatz
because they eliminate the need for functions that would appear from homogeneous
solutions at each order. The proposed phase modulation is

� = φ + εψ + ε2δ . (5.1)

Then, with

�:= φT and q: = φX ⇒ qT − �X = 0 , (5.2)

and

X = ε(x + cgt) , T = ε2t , (5.3)

the complete proposed ansatz (1.32) is

Z(x, t) = Ẑ
(
θ + εφ + ε2ψ + ε3δ,k + ε2q + ε3ψ X + ε4δX ,

ω + ε2cgq + ε3(� + cgψ X ) + ε4(ψT + cgδX ) + ε5δT
)

+ε3W (θ , X , T ; ε) .

(5.4)

where θ , φ, ψ , δ, q, and � are all functions of X and T defined in (5.3), and cg is
defined in (4.7). For ease, expand W in an asymptotic series,

W (θ , X , T , ε) = W3(θ , X , T ) + εW4(θ, X , T ) + ε2W5(θ , X , T ) + · · · .

The remainderW could be defined asW (θ +εφ+ε2ψ +ε3δ, X , T , ε), to synchronize
with the form of the modulation of the basic state, but is equivalent to the above
formulation: expansion of W in a Taylor series in ε just changes the form of Wj at
each order, but the overall expansion gives equivalent results.

Although the ansatz (5.4) is new, the expansion and substitution strategy is similar
to our previous papers on multiphase modulation (Ratliff and Bridges 2016; Ratliff
2017a, 2018a) and the single phase coalescing characteristics (Bridges and Ratliff
2017) and so only the key new points are highlighted. For example, at ε0 order the
governing equation for Ẑ in (2.7) is recovered. At ε1 and ε2 order the generic 2-term
Jordan chain in (2.11) is recovered as in the preceding works.

At third order in ε, after simplification, the system is

LW3 =
N∑
j=1

∂Xq jK
(
Ẑk j + cg Ẑω j

)
, (5.5)
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where

K:=J + cgM , (5.6)

and cg is defined in (4.7). Applying the solvability condition (2.13)–(5.5) gives

N∑
j=1

∂Xq j
〈〈
Ẑθi , (J + cgM)

(
Ẑk j + cg Ẑω j

)〉〉 = 0 , i = 1, . . . , N

or, after using the conversions from the structure operators J, M to the functionals
A j ,B j in (2.19b)–(2.19c), the solvability condition can be written in the illuminating
vector form

[
DkB + cg(DωB + DkA) + c2gDωA

]
qX = 0 . (5.7)

Hence, for solvability of (5.5) it is required that qX is in the kernel of E(cg),

qX = UXζ ⇒ q = U (X , T )ζ + a(T ) ,

for some scalar-valued function U (X , T ). It can be confirmed a posteriori that a(T )

does not contribute to the leading order result and can be neglected. Hence,

q = U (X , T )ζ . (5.8)

It is this scalar-valued function U (X , T ) that will ultimately be found to be governed
by the two-way Boussinesq equation (1.27).

With the solvability condition satisfied, and the expression for q in (5.8), the com-
plete solution at third order is

W3 = UXv3 , with Lv3 = Kv2 . (5.9)

An arbitrary amount of homogeneous solution can be added to W3 but it is already
incorporated into the functions δ and ψ in the ansatz. The equation Lv3 = Kv2
foreshadows a Jordan chain theory. The beginnings of the chain are in (2.11) which
can be re-written as Lv1 = 0 and Lv2 = Kv1. This Jordan chain theory is developed
in Sect. 6.
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5.1 Fourth Order

After simplification, the equation at fourth order is

L

(
W4 −UX

N∑
i=1

φi (v3)θi

)
= UXXKv3 +

N∑
j=1

(ψ j )XXK
(
Ẑk j + cg Ẑω j

)

+UT

N∑
j=1

ζ j
(
JẐω j + MẐk j + 2cgMẐω j

)
.

(5.10)

The first inhomogeneous term feeds into the Jordan chain argument as it is of the
form Lv4 = Kv3, for some v4. For the other two inhomogeneous terms, apply the
solvability conditions (2.13), and use the identities (2.19b)–(2.19c), to obtain

E(cg)ψ XX + [
(DkA + DωB) + 2cgDωA

]
︸ ︷︷ ︸

E′(cg)

ζUT = 0 . (5.11)

This equation is of the form (4.5); that is, the Jordan chain associated with E(c). The
theory of this Jordan chain is developed in Sect. 6.2. Here, it is sufficient to use the
argument presented in (4.5) and (4.7) for the chain (ζ , γ ) of E(cg). Applying that
theory gives

ψ XX = γUT (mod Ker(E(cg))) , (5.12)

where “mod” signifies that an arbitrary amount of homogeneous solution can be
included. This homogeneous solution can be neglected as it does not enter at fifth
order. Thus the solution at fourth order is

W4 = UXXv4 +UT� +UX

N∑
j=1

φ j (ξ5)θ j (mod Ker(L)) , (5.13)

with

L� =
N∑
j=1

[
ζ j
(
JẐω j + MẐk j + 2cgMẐω j

)+ γ jK(Ẑk j + cg Ẑω j )
]

. (5.14)

Fortunately, this equation does not need to be solved explicitly. It feeds into the
fifth-order solution, and ultimately generates formulae for the coefficients, but these
formulae will be obtained without an explicit expression for �.
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5.2 Fifth Order

At fifth order, after combining terms and simplifying, the equations are

LW̃5 = UXXXKv4 +
N∑
i=1

[
(�i )TMẐωi + (δi )XK(Ẑki + cg Ẑωi )

]

+UXT (J� + Mv3) +
N∑
i=1

(ψi )XT (JẐωi + MẐki + 2cgMẐωi )

+UUX

N∑
i=1

[
K(v3)θi − D3S(Ẑ)(v3, Ẑki + cg Ẑωi )

+
N∑
j=1

K(Ẑki k j + cg Ẑωi k j + cg Ẑkiω j + c2g Ẑωiω j )

]
.

(5.15)

The tilde aboveW5 term indicates that the preimage of all terms lying in the range ofL
from the right-hand side have been absorbed (e.g. terms that would vanish identically
under the solvability conditions). These terms come into play only at higher order.

It is the solvability condition for this fifth-order equation that will deliver the mod-
ulation equation forU (X , T ). However, solvability is a multistage process. There are
N solvability conditions associated with the operator L, leading to a vector-valued
equation. A secondary solvability condition, associated with the operator E(cg), will
reduce vector equation to the scalar two-way Boussinesq equation.

First establish the vector solvability condition. Apply the L-solvability (2.13) con-
dition to the right-hand side of (5.15) term by term. Solvability of the UXXX term
generates the vector

⎛
⎜⎝

〈〈Ẑθ1 ,Kv4〉〉
...

〈〈ẐθN ,Kv4〉〉

⎞
⎟⎠UXXX := − TUXXX . (5.16)

We will see that this vector is nonzero since, by hypothesis, the Jordan chain
(v1, . . . , v4) has length four. This is discussed in Sect. 6. Solvability of the (�i )T
terms leads to the matrix term

⎛
⎜⎝

〈〈Ẑθ1 ,MẐω1〉〉 · · · 〈〈Ẑθ1 ,MẐωN 〉〉
...

. . .
...

〈〈ẐθN ,MẐω1〉〉 · · · 〈〈ẐθN ,MẐωN 〉〉

⎞
⎟⎠�T ≡ −DωA�T . (5.17)

The terms containing δi give

⎛
⎜⎝

〈〈Ẑθ1 ,K(Ẑk1 + cg Ẑω1 )〉〉 · · · 〈〈Ẑθ1 ,K(ẐkN + cg ẐωN )〉〉
.
.
.

. . .
.
.
.

〈〈ẐθN ,K(Ẑk1 + cg Ẑω1 )〉〉 · · · 〈〈ẐθN ,K(ẐkN + cg ẐωN )〉〉

⎞
⎟⎠ δXX = −E(cg)δXX .

(5.18)
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The terms involving (ψi )XT are similar to those seen at fourth order, and generate
⎛
⎜⎜⎝

〈〈Ẑθ1 , JẐω1 + MẐk1 + 2cgMẐω1 〉〉 · · · 〈〈Ẑθ1 , JẐωN + MẐkN + 2cgMẐωN 〉〉
.
.
.

. . .
.
.
.

〈〈ẐθN , JẐω1 + MẐk1 + 2cgMẐω1 〉〉 · · · 〈〈ẐθN , JẐωN + MẐkN + 2cgMẐωN 〉〉

⎞
⎟⎟⎠ψ XT

= −
[
(DkA + DωB) + 2cgDωA

]
ψ XT

= −E′(cg)ψ XT .

(5.19)

The coefficient of the nonlinear term UUX simplifies to

−(D2
kB + cg(2DkDωB + D2

kA) + c2g(2DkDωA + D2
ωB) + c3gD

2
ωA)(ζ , ζ )UUX

:= − H(ζ , ζ )UUX .

(5.20)

When cg = 0 the vector function H(ζ , ζ ) reduces to H(ζ , ζ ) = D2
kB(ζ , ζ ) which is

the form found in reduction of multiphase modulation to the KdV equation in Ratliff
and Bridges (2016), Ratliff (2018b).

Collecting these terms gives the vector form of the solvability condition for (5.15)

E(cg)δXX + DωA�T + E′(cg)ψ XT + TUXXX + H(ζ , ζ )UUX = 0 . (5.21)

This equation is interesting in itself, but it is not closed due to the presence of the δXX

term and the ψ XT term. However, the δXX term is acted on by E(cg) and so this term
vanishes when the equation is projected onto the kernel of E(cg). Therefore, split R

N

as

R

N = span{ζ } ⊕ R

N−1 .

The projection of (5.21) onto the complement of Ker(E(cg)) still contains the δXX

term but this part carries over to higher order.
With this splitting in mind, act on (5.21) with ζ T ,

ζ TE(cg)δXX + ζ TDωA�T + ζ TE′(cg)ψ XT + ζ TTUXXX + ζ TH(ζ , ζ )UUX = 0 .

(5.22)

Defining

κ = ζ TH(ζ , ζ ) and K = ζ TT = 〈〈Kv1, v4〉〉 ,

and noting that the coefficient of the δXX term now vanishes as E(cg) is symmetric,
(5.22) simplifies the vector equation to

ζ TDωA�T + ζ TE′(cg)ψ XT + κUUX + K UXXX = 0 . (5.23)
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This equation is closed by first differentiating with respect to X ,

ζ TDωA�XT + ζ TE′(cg)ψ XXT + κ(UUX )X + K UXXXX = 0 ,

and applying conservation of waves and the ψ-U equation (5.12),

�XT = qT T = ζUTT and ψ XXT = γUTT .

Hence, the final form of the two-way Boussinesq equation is

μUTT + κ (UUX )X + K UXXXX = 0 , (5.24)

with

μ = ζ TDωAζ + ζ T [(DkA + DωB − 2cgDωA
]
γ . (5.25)

Another way to write this is to use E(cg),

μ = 1

2
ζ TE′′(cg)ζ + ζ TE′(cg)γ ; (5.26)

emphasizing that μ �= 0 is the termination condition for the (ζ , γ ) Jordan chain.
Comparing ζ TH(ζ , ζ ) with (2.24) shows that

κ = ζ TH(ζ , ζ ) = d3

ds3
L (ω + scgζ ,k + sζ )

∣∣∣∣
s=0

. (5.27)

The emergent two-way Boussinesq equation is non-degenerate when μ, κ and K
are nonzero. The coefficient μ is nonzero when the Jordan chain for E(cg) in (4.5)
terminates at two. The coefficient κ is assumed to be nonzero. If it is zero, then it is
expected that re-modulation will lead to a cubic nonlinearity (El et al. 2017; Ratliff and
Bridges 2018; Ratliff 2018b). The coefficient of dispersion is nonzero if the Jordan
chain in (6.11) terminates at four. If K vanishes, then a longer Jordan chain will
emerge. Re-modulation in this case is expected to lead to higher-order dispersive
terms emerging (e.g. sixth-order dispersion, as in Sprenger and Hoefer 2017; Ratliff
2017b).

The above result does not provide any information about convergence of the ansatz
(5.4) as a Taylor series in ε. However, the asymptotic validity of this ansatz is confirmed
by the above results; that is, the ansatz (5.4) satisfies the governing equations exactly
up to O(ε5),

∥∥∥MZt + JZx = ∇S(Z)

∥∥∥ = O(ε6) as ε → 0 .

For generic multiphase WMT, a rigorous proof of validity has been given for CNLS
(Bridges et al. 2020), but a rigorous proof of validity in the case of coalescing charac-
teristics is an open problem.
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To summarize, the starting point is a PDE generated by a Lagrangian with a mul-
tiphase basic state. It is assumed that, at some parameter value, a pair of coalescing
characteristics arises in the linearized Whitham equations. These coalescing charac-
teristics generate several Jordan chains. A modulation ansatz of the form (5.4) then
leads to a scalar two-way Boussinesq equation (5.24) with coefficients μ, κ , and K
all determined from abstract properties of the averaged Lagrangian. The fundamental
idea is that the original PDE is reduced to a simpler PDE that can be analysed in
some detail. Some of the solutions of this reduced two-way Boussinesq equation are
anticipated in Sect. 7.

6 Coalescing Characteristics and Jordan Chains

Jordan chains play an important part throughout the steps of the derivation of the
nonlinear modulation equations. In this section, some of the properties of these Jordan
chains are examined in more detail.

There are two key linear operators: L and E(c). The operator L, associated with the
linearization of the Euler–Lagrange equation (2.3), generates a Jordan chain theory
that starts with

Lξ j = 0 with ξ j := ∂ Ẑ

∂θ j
, j = 1, . . . , N , (6.1)

and

Lξ1 = 0 , LξN+1 = Jξ1
...

...

LξN = 0 , Lξ2N = JξN ,

(6.2)

which follow from (2.11) with

ξN+ j := ∂ Ẑ

∂k j
, j = 1, . . . , N .

With the assumption that Ker(L) = span{ξ1, . . . , ξN }, there are N Jordan blocks each
of dimension two.

The operator E(cg) generates another Jordan chain which can be discussed inde-
pendently of the L-chains, but feeds into solvability of the L chains, and it starts
with

E(c)ζ = 0 . (6.3)

Generically, E(c) has a single Jordan block of dimension one. At isolated values,
for example at c = cg , the Jordan block increases to dimension two. Even thoughE(c)
is Hermitian for any real c, it still generates a non-trivial Jordan chain due to the fact
that c appears nonlinearly.
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The theory needed to extend these two Jordan chains is well established in the
literature. The above L-chains are J-symplectic Jordan chains and this theory goes
back to Williamson (1936), and the theory of Jordan chains for quadratic Hermitian
matrix pencils is developed in Gohberg et al. (1980).

However, things get complicated when we realize that the linear operator L has
both J-Jordan chains and M-Jordan chains. From (2.11), it follows that there exist
M-Jordan chains of the form

Lξ1 = 0 , LηN+1 = Mξ1
...

...

LξN = 0 , Lη2N = MξN ,

(6.4)

which follow from (2.11) with

ηN+ j := ∂ Ẑ

∂ω j
, j = 1, . . . , N .

The J-chains (6.2) have length greater than two if at least one of the following

Lχ j = JξN+ j , j = 1, . . . , N ,

is solvable, and termination at two is associated with non-solvability of all N of these
equations. Similarly, the M-chains have length greater than two if at least one of the
following

Lχ j = MηN+ j , j = 1, . . . , N ,

is solvable, and termination at two is associated with non-solvability. The N chains in
(6.2) and (6.4) can also bemixed, by taking the first elements to be linear combinations
of ξ1, . . . , ξN , and this turns out to be useful for the modulation theory.

Combining all the possibilities for both J-chains and M-chains, the most general
extension of the Jordan chains is that there exists a vector � satisfying

L� =
N∑
j=1

(
a jMηN+ j + b jMξN+ j + c jJηN+ j + d jJξN+ j

)
. (6.5)

No theory exists for Jordan chains of this type. The closest approximation is the Jordan
chain theory for multiparameter eigenvalue problems (e.g. Binding and Volkmer 1996
and its citation trail), but that does not apply here either. We will be able to develop
a satisfactory theory for multi-dimensional Jordan chains of this type to cover the
cases needed in the modulation theory, but a complete and general theory for multi-
dimensional Jordan chains of this type is outside the scope of this paper.
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A solution� of (6.5) exists if this equation is solvable, and it is solvable if and only
if the 4N constants a j , b j , c j , d j for j = 1, . . . , N , satisfy

〈
ξ�,

N∑
j=1

(
a jMηN+ j + b jMξN+ j + c jJηN+ j + d jJξN+ j

)〉 = 0 , � = 1, . . . , N .

These equations can be simplified by using the identities in Sect. 2.1.2, giving

[DωA]a + [DkA]b + [DωB]c + [DkB]d = 0 , (6.6)

where

a:=
⎛
⎜⎝
a1
...

aN

⎞
⎟⎠ , b:=

⎛
⎜⎝
b1
...

bN

⎞
⎟⎠ , c:=

⎛
⎜⎝
c1
...

cN

⎞
⎟⎠ , d:=

⎛
⎜⎝
d1
...

dN

⎞
⎟⎠ .

Hence, if there exists values of these 4N constants for which Eq. (6.6) has a non-trivial
solution, then � is the next vector in the generalized Jordan chain.

A general theory considering all possible Jordan chains emanating from the condi-
tion (6.6) is outside the scope of this paper. However, we will highlight special cases
that appear in the nonlinear modulation theory. The case a = c = 0 (a pure J-chain)
appears in the nonlinearmodulation theory associatedwith zero characteristics (Ratliff
and Bridges 2016; Ratliff 2017a, 2018a), and the case b = d = 0 is mathematically
equivalent, and generates a pure M-chain. Here, two new cases which intertwine the
J and M chains, and are required for the nonlinear modulation theory in this paper,
will be highlighted.

6.1 The Key Jordan Chain of Length Four

Taking

a = c2ζ , b = c = cζ and d = ζ , (6.7)

reduces the solvability condition (6.6) to

[
c2DωA + c(DkA + DωB) + DkB

]
ζ = 0 . (6.8)

Remarkably, this is precisely the equation for characteristics. In this case, the Jordan
chain associated with L can continue when �(c) = 0 and ζ ∈ Ker[E(c)], the familiar
condition (1.23) for the existence of a characteristic c. However, this construction does
not imply that c = cg , that equivalence will follow from another Jordan chain and it
is considered in Sect. 6.2.

In the case (6.7) with (6.8), the Jordan chain intertwines the symplectic J-chain and
the symplectic M-chain. They can be combined to a new symplectic Jordan chain,
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based on the combined symplectic operator J+ cM and ultimately leads to the central
Jordan chain that shows up in the nonlinear modulation theory.

Suppose first that c is arbitrary, and see that the condition c = cg will arise as a con-
dition to extend the Jordan chain in Sect. 6.2. For arbitrary c, there is still a geometric
eigenvector ζ satisfying E(c)ζ = 0. Express it in components, ζ = (ζ1, . . . , ζN ), and
re-number the generalized eigenvectors as follows,

v1 =
N∑
j=1

ζ j∂ Ẑ/∂θ j

v2 =
N∑
j=1

ζ j (∂ Ẑ/∂k j + c ∂ Ẑ/∂ω j ) ,

(6.9)

These two vectors satisfy

Lv1 = 0 and Lv2 = (J + cM)v1 .

This Jordan chain of length continues to length three if the following equation is
solvable,

Lv3 = (J + cM)v2 .

But, the existence of the v3 term is just a reformulation of the solvability condition
(4.6) in terms of the new coordinates. To see this, write out the solvability condition
for v3

〈〈Ẑθ j , (J + cM)v2〉〉 = 0 , j = 1, . . . , N .

Using (6.9), and noting that

〈〈Ẑθ j , (J + cM)v2〉〉 = −〈〈(J + cM)Ẑθ j , v2〉〉
= −〈〈L(∂k j Ẑ + c∂ω j Ẑ), v2〉〉
= −〈〈(∂k j Ẑ + c∂ω j Ẑ),Lv2〉〉
= −〈〈(∂k j Ẑ + c∂ω j Ẑ), (J + cM)v1〉〉 , j = 1, . . . , N .

Substituting for v1 and using the identities (2.19a)–(2.19c), generates precisely
Eq. (6.8). Indeed it was working backwards from (6.8) that suggested the definitions
(6.9). Since L is symmetric and J + cM is skew-symmetric every Jordan chain has
even length, assuring the existence of v4,

Lv4 = (J + cM)v3 .

It is assumed that the this four chain terminates; that is, the system

Lv5 = (J + cM)v4 , (6.10)
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is not solvable. The four chain

Lv j = (J + cM)v j−1 , j = 1, . . . , 4 , (6.11)

with v0 = 0 is the Jordan chain that plays a key role in the nonlinear modulation
theory. The non-solvability of (6.10) also arises in the nonlinear modulation theory. It
ensures that the coefficient of dispersion, K , is nonzero.

In addition there are N − 1 Jordan blocks of length two, but explicit expressions for
these blocks are not needed in the nonlinear modulation theory. It is however assumed
that they are each of length exactly two.

6.2 Another Mixed Jordan Chain Defining cg

There is yet another Jordan chain, associated with L, that arises in the nonlinear
modulation theory and the solvability condition for this chain defines cg . It is a special
case of the solvability condition (6.6) obtained by taking

a = c2γ + 2cζ , b = c = cγ + ζ , d = γ . (6.12)

Substitution of (6.12) into (6.6) and rearranging gives

[
DωAc2 + (DkA + DωB)c + DkB

]
γ + [2cDωA + (DkA + DωB)] ζ = 0 ,

(6.13)

or

E(c)γ + E′(c)ζ = 0 . (6.14)

This equation is solvable for a fixed value of c only, and the solvability condition

〈ζ ,E′(cg)ζ 〉 = 0 ,

agrees with the definition of cg in (4.5) and (4.7). When c = cg , the vectors (ζ , γ )

form a Jordan chain for E(cg) of length two.
Suppose the solvability condition (6.13) and (6.14) is satisfied, then substitution

back into (6.5) gives that

L� =
N∑
i=1

[
ζi
(
JẐωi + MẐki + 2cgMẐωi

)+ γi (J + cgM)(Ẑki + cg Ẑωi )
]

.

(6.15)

It is this equation that arose in themodulation theory at fourth order (5.14) andworking
backwards we see that it is a special case of (6.5) and moreover solvability, with the
expressions (6.12), is precisely the condition for the Jordan chain (6.14) of E(cg).
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Further still, we can define another special case, which results in the criterion for
the termination of this chain. This is achieved by setting

a = c2gϒ + 2cgγ + ζ , b = c = cgϒ + γ , d = ϒ . (6.16)

Utilizing this in (6.6) and simplifying results in the system

E(cg)ϒ + E′(cg)γ + 1

2
E′′(cg)ζ = 0 ,

which is precisely (4.9). The assumption made here is that this chain is of length two,
and so the right hand side of (4.9) does not lie in the range of L. Thus, by appealing
to solvability one recovers the condition that

μ:=〈ζ ,E′(cg)γ + 1

2
E′′(cg)ζ 〉 = 1

2
〈ζ ,E′′(cg)ζ 〉 − 〈γ ,E(cg)γ 〉 �= 0 ,

and therefore completing the connection between μ and the termination of this
mixed Jordan chain. Within the modulation theory, this corresponds to the system

L� =
N∑
i=1

[
ζiMẐωi + γi

(
JẐωi + MẐki + 2cgMẐωi

)+ ϒi (J + cgM)(Ẑki + cg Ẑωi )
]

,

being unsolvable for �, and what ultimately leads to the coefficient of the time
derivative term in the emergent two-way Boussinesq equation.

We have only scratched the surface of the possible solvability conditions and atten-
dant Jordan chains associated with (6.5). However, we have all the Jordan chains
needed for the nonlinear modulation theory.

7 Properties of the Two-way Boussinesq Equation

Once the modulation equation is derived in a specific context, analysis of the solutions
of the two-way Boussinesq equation (5.24) gives information about the nature of
solutions in the nonlinear problem near coalescence.

The two-way Boussinesq equation is valid at c = cg . At least one parameter needs
to be varied to obtain the coalescence. That parameter can be a one-parameter path
through the four-dimensional frequency-wavenumber (ω,k) space, or it could be a
perturbation of the frame speed c = cg + O(ε2). Unfolding the singularity generates
a term of the form νUXX in (5.24), regardless of the precise perturbation path (this
can be shown by perturbing the linearized genericWhitham equations). Therefore, the
full modulation equation in the neighbourhood of the coalescence is

μUTT + νUXX + κ (UUX )X + K UXXXX = 0 , (7.1)

where ν is an order one constant.
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s = 1 s = +1

k̂2 k̂2

s1 = +1

k̂2k̂2

ω̂2 ω̂2

ω̂2 ω̂2

s1 = −1

Fig. 2 The four qualitative cases of the dispersion relation (7.3) determined by the signs s1 and s2 in the
two-way Boussinesq equation (7.2)

When the coefficients are nonzero, the Boussinesq equation can be put into standard
form. Scale the independent and dependent variables: τ = aT , ξ = bX , andU = ρu;
then values of a, b, ρ can be chosen so that the two-wayBoussinesq equation becomes

uττ + s1uξξ +
(
1

2
u2
)

ξξ

+ s2uξξξξ = 0 , s1, s2 = ±1 , (7.2)

with

s1 = sign(μν) and s2 = sign (μK ) .

The sign s1 determines whether the unfolding is into the elliptic region (s1 = +1) or
into the hyperbolic region (s1 = −1, in which case all characteristics are hyperbolic).
The sign s2 indicates whether the resulting two-way Boussinesq equation is good
(s2 = +1) or bad (s2 = −1). In the latter case, the initial value problem for the
linearized system about u = 0 is ill-posed, and small initial data with zero mean is
therefore expected to saturate to form nonlinear structures. The ill-posedness in the
case s2 = −1 can be seen by considering the linearization of (7.2) about the trivial

solution and introducing a normal mode solution of the form ei(k̂ξ+ω̂τ ). The dispersion
relation associated with the normal mode is then

ω̂2 = −s1k̂
2 + s2k̂

4 . (7.3)

There are four cases depending on the signs s1 and s2, and they are shown in Fig. 2.
The figure plots ω̂2 against k̂2 and so ω̂2 < 0 indicates linear instability of the trivial
solution which in turn reflects linear instability of the basic travelling wave.
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When s1 < 0 (the upper two cases in Fig. 2) then either an unstable band emerges at
finite k̂ when s2 = −1 or the Boussinesq equation is hyperbolic for all wavenumbers
(s2 = +1). When s1 > 0 (lower two cases in Fig. 2) then either a cutoff wave number
emerges with re-stabilization at finite k̂ (as in the lower right diagram with s2 = +1),
or instability is further enhanced for all wavenumbers (s1 = +1 and s2 = −1).

The simplest class of nonlinear solutions of (7.2) are travelling solitary wave solu-
tions, for example,

u(ξ, τ ) = û(ξ + γ τ) ,

which satisfies the ODE

(
γ 2û + s1û + 1

2
û2 + s2û

′′)′′ = 0 .

Integrating and taking the function of integration to be constant

s2û
′′ + (s1 + γ 2)̂u + 1

2
û2 = h .

The constant of integration h is fixed by initial data or the value of û at infinity. For
appropriate parameter values, this planar ODE has a family of periodic solutions and
a homoclinic orbit which represent periodic travelling waves and a solitary travelling
wave solution of (7.2). The implication of these solutions is that the transition from
elliptic to hyperbolic of a periodic travelling wave of the original system generates a
coherent structure in the transition, which is represented by the above solitary wave.
However, there is much more complexity generated at the transition. Hirota (1973)
shows that there is a large family of M-soliton solutions to (7.2) as well, where M can
be any natural number. Further details especially in the case M = 2 are given in Hirota
(1973). Blow-up can occur in the two-way Boussinesq equation even in the case of
the good Boussinesq equation (Turitsyn 1993). It is also generated by a Lagrangian,
and has both a Hamiltonian and multisymplectic structure (e.g. Sect. 10 of Bridges
and Derks 2001; Chen 2005).

8 CNLSWavetrains with Coalescing Characteristics

To illustrate the nonlinear theory it is applied to the modulation of two-phase wave-
trains of a coupled nonlinear Schrödinger (CNLS) equation. This example serves two
purposes: firstly, it shows that the coalescence of characteristics is quite common
and appears even in the simplest of examples, and secondly, it shows that computing
the coefficients in the emergent two-way Boussinesq equation is elementary once the
properties of the basic state are found.

The CNLS equation is a canonical example of a PDE generated by a Lagrangian
with a toral symmetry, T2 = S1 × S1. Indeed any finite number of NLS equations can
be coupled together to generate a toral symmetry T

N for any natural number N , and
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they will have explicit N -phase wavetrains which are also relative equilibria. Here,
attention is restricted to two coupled NLS equations in the form

i
∂�1

∂t
+ α1

∂2�1

∂x2
+ (β11|�1|2 + β12|�2|2)�1 = 0

i
∂�2

∂t
+ α2

∂2�2

∂x2
+ (β21|�1|2 + β22|�2|2)�2 = 0 ,

(8.1)

where the coefficients α j , βi j , i, j = 1, 2, are given real constants, with β21 = β12.
The functions � j (x, t) are complex-valued and i2 = −1.

Coupled NLS equations appear in a wide range of applications. Two applications
that motivated this work are the coupled NLS equations that appear in the theory
of water waves (e.g. Roskes 1976; Ablowitz and Horikis 2015; Degasperis et al.
2019), and in models for Bose-Einstein condensates (e.g. Salman and Berloff 2009;
Kevrekidis and Frantzeskakis 2016). The PDE (8.1) is the Euler–Lagrange equation
for

L(�) =
∫ t2

t1

∫ x2

x1
L(�t , �x , �) dxdt ,

with �:=(�1, �2) and

L = i

2

(
�1(�1)t − �1(�1)t

)+ i

2

(
�2(�2)t − �2(�2)t

)
−α1

∣∣(�1)x
∣∣2 − α2

∣∣(�2)x
∣∣2 + 1

2β11|�1|4 + β12|�1|2|�2|2 + 1
2β22|�2|4 ,

with the overline denoting complex conjugate.
The toral symmetry follows from the fact that (eiθ1�1, eiθ2�2) is a solution of (8.1),

for any (θ1, θ2) ∈ S1 × S1, when (�1, �2) is a solution. The complex coordinates
can be converted to real coordinates, generating a standard action of T

2 but will not
be needed as the main calculations can be done in the complex setting.

Noether’s theorem gives the conservation laws

(A j )t + (Bj )x = 0 , j = 1, 2 , (8.2)

with

A j = 1

2
|� j |2 and Bj = α1Im(�1(�1)x ) , j = 1, 2 . (8.3)

The basic state is just the usual family of plane waves, but interpreted here as a
family of relative equilibria associated with the T

2 symmetry; it has the form,

� j (x, t) = �0
j (ω,k)eiθ j (x,t) , θ j (x, t) = k j x + ω j t + θ0j , j = 1, 2 . (8.4)
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Substitution into the governing equation (8.1) generates the required relationship
between the amplitudes, frequencies and wavenumbers,

|�0
1 |2 = 1

β

(
β22(ω1 + α1k

2
1) − β12(ω2 + α2k

2
2)

)

|�0
2 |2 = 1

β

(
β11(ω2 + α2k

2
2) − β21(ω1 + α1k

2
1)

)
,

(8.5)

with β21:=β12 and β = β11β22 − β12β21 �= 0.
The key wave action vectors A(ω,k) and B(ω,k), needed for analysis of the lin-

earization, are obtained by substituting (8.5) into the components of the conservation
law (8.3),

A(ω,k):=
(
A1(ω,k)

A2(ω,k)

)
= 1

2β

(
β22(ω1 + α1k21) − β12(ω2 + α2k22)
β11(ω2 + α2k22) − β21(ω1 + α1k21)

)
(8.6)

and

B(ω,k):=
(
B1(ω,k)

B2(ω,k)

)
= α1k1

β

(
β22(ω1 + α1k21) − β12(ω2 + α2k22)
β11(ω2 + α2k22) − β21(ω1 + α1k21)

)
. (8.7)

The linear operator E(c) defined in (1.20) is

E(c):=DωAc2 + (DkA + DωB)c + DkB ,

with

DωA = 1

2β

(
β22 −β12

−β12 β11

)
, (8.8)

and

DkA = 1

β

(
α1β22k1 −α2β12k2

−α1β12k1 α2β11k2

)
= DωBT , (8.9)

and

DkB = 1

β

(
α1β|�0

1 |2 + 2β22α
2
1k

2
1 −2β12α1α2k1k2

−2β12α1α2k1k2 α2β|�0
2 |2 + 2α2

2β11k22

)
. (8.10)

The characteristic polynomial is

�(c):=det[E(c)] = a0c
4 + a1c

3 + a2c
2 + a3c + a4 , (8.11)
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with

a0 = 1
4β−1 ,

a1 = β−1(α1k1 + α2k2) ,

a2 = 1
2β−1

[
α1(β11|�0

1 |2 + 2α1k21) + α2(β22|�0
2 |2 + 2α2k22) + 8α1α2k1k2

]
,

a3 = 2α1α2β
−1
(
k1(β22|�0

2 |2 + 2α2k22) + k2(β11|�0
1 |2 + 2α1k21)

)
a4 = α1α2β

−1
(
(β11|�0

1 |2 + 2α1k21)(β22|�0
2 |2 + 2α2k22) − |�0

1 |2|�0
2 |2β2

12

)
.

(8.12)

Coalescing characteristics are obtained by solving �(c) = �′(c) = 0 for c. This
problem is solved numerically in Bridges and Ratliff (2019) by using the graphical
sign characteristic. The function �(c) is plotted versus c as parameters vary. That
way roots and points where �′(c) = 0 can be read off the graph. It is inspired by the
graphical Krein signature introduced by Kollár and Miller (2014). Results in Bridges
and Ratliff (2019) show that coalescing characteristics are plentiful in the Whitham
modulation theory for CNLS.

According to the theory in this paper at coalescing characteristics, the following
nonlinear modulation equation is generated

μUTT + κ(UUX )X + K UXXXX = 0 . (8.13)

In principle, the quartic �(c) = 0 can be solved in closed form, but in practice this is
lengthy and not illuminating, and numericalmethods aremore effective. For simplicity
here, the case of Stokes waves (where k = 0) are considered, which restricts the
parameter space significantly, and so calculations can be done explicitly. The strategy
for calculating μ and κ is to construct the averaged Lagrangian and use the formulas
(1.28) and (2.25).

8.1 Calculations for StokesWaves

Stokes waves are basic states corresponding to (8.4) but with k = 0, leading to the
typical nonlinear Stokes frequency shift of the original near-linear wavepackets. With
this restriction the coefficients a1 and a3 are identically zero reducing the coefficients
in the polynomial in (8.12) to

a0 = 1
4β

−1 ,

a2 = 1
2β

−1
[
α1β11|�0

1 |2 + α2β22|�0
2 |2
]
,

a4 = α1α2|�0
1 |2|�0

2 |2 .

There are four characteristics and they satisfy the biquadratic equation

a0c
4 + a2c

2 + a4 = 0 ,
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giving

c2 = −α1β11|�0
1 |2 − α2β22|�0

2 |2

±
√

(α1β11|�0
1 |2 − α2β22|�0

2 |2)2 + 4α1α2β
2
12|�0

1 |2|�0
2 |2 . (8.14)

Coalescing characteristics occur precisely when the discriminant vanishes

(α1β11|�0
1 |2 − α2β22|�0

2 |2)2 + 4α1α2β
2
12|�0

1 |2|�0
2 |2 = 0 .

Oneway to interpret this equation is as a line in the positive quadrant of
(|�0

1 |2, |�0
2 |2
)

space defined by

α2β
2
22|�0

2 |2 = α1
(
β11β22 − 2β2

12 ± 2|β12|
√−β

)|�0
1 |2 , (8.15)

which includes the conditions β < 0 and α1α2 < 0 for reality. At coalescence, it
follows from (8.14) that

c2g = −α1β11|�0
1 |2 − α2β22|�0

2 |2 ,

which carries with it the requirement that α1β11|�0
1 |2 + α2β22|�0

2 |2 < 0, a con-
dition that is effectively a generalization of the defocussing classification for the
one-component NLS.

Now suppose parameters are such that (8.15) is satisfied, and proceed to compute
the required coefficients in (8.13). The eigenvector and generalized eigenvector of
E(cg) are,

ζ =
(

c2gβ12

β22c2g + 2α1β|�0
1 |2
)

,

γ = − 8cgα1β12|�0
1 |2β2

β22c2g + 2α1β|�0
1 |2

(
1
0

)
.

(8.16)

Now use these eigenvectors and the Jacobians (8.8), (8.9) and (8.10) to generate the
coefficients of the emergent Boussinesq equation. The first computed is the coefficient
of the time derivative term,

ζ TDωAζ + ζ TE′(cg)γ = 4c2gκ0 , with κ0 = 4β(β22c
2
g + 2α1β|�0

1 |2) .

Next, one may use the variation of the Lagrangian to show that the coefficient of the
nonlinear term is

κ = − 3c2gκ0

2|�0
2 |2 (α1β11|�0

1 |2 − α2β22|�0
2 |2)(α1β11|�0

1 |2 − α2β22|�0
2 |2 + 2α1β12|�0

2 |2) ,

The coefficient of dispersion requires a Jordan chain analysis. This would require
multisymplectification of CNLS and construction of the linear operator L. However,
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this CNLS has been multisymplectified in Ratliff (2017a), where reduction to KdV
and 2-parameter Boussinesq were studied, and the Jordan chain theory is close to this
case. With minor modification of that analysis, the desired dispersive coefficient is
found to be

ζ TT = κ0(α2|�0
1 |2 − α1|�0

2 |2)
|�0

1 |2|�0
2 |2(α1β11|�0

1 |2 − α2β22|�0
2 |2)

.

Each of these coefficients has a common factor κ0, and so the two-way Boussinesq
that emerges at the coalescence of characteristics simplifies to

c2gUTT +
(
1

2
κ̃U 2 + ˜K UXX

)
XX

= 0 , (8.17)

with

κ̃ = − 3c2g
8|�2|2 (α1β11|�1|2 − α2β22|�2|2)(α1β11|�1|2 − α2β22|�2|2 + 2α1β12|�2|2) ,

˜K = α2|�0
1 |2 − α1|�0

2 |2
4|�0

1 |2|�0
2 |2(α1β11|�0

1 |2 − α2β22|�0
2 |2) .

With κ̃ and ˜K nonzero, one can proceed to analyse the solutions of this equation
using results in the literature (e.g. Hirota 1973; Turitsyn 1993). A detailed analysis
of (8.17) and its implications for coupled NLS is outside the scope of this paper, but
the diversity of complexity due to coalescing characteristics is clear; for example,
evaluation of ˜K along the lines (8.15) shows that (8.17) can be both positive (good
Boussinesq) and negative (bad Boussinesq).

9 Concluding Remarks

This paper gives a complete weakly nonlinear theory for multiphaseWMTwhen a pair
of characteristics coalesce and transition from hyperbolic to elliptic. This transition,
in the nonlinear problem creates nonlinear dispersive dynamics, and it transpires that
the resulting normal form is the two-way Boussinesq equation. There are potential
generalizations and new directions emerging from this theory.

9.1 Generalization to 2+ 1

Although we have confined the discussion to 1 + 1 dimensions, there is a natural
generalization to 2 + 1. A good starting point is the 2 + 1 theory for the nonlinear
modulation of single-phase wavetrains near coalescing characteristics (Bridges and
Ratliff 2018). However, the Jordan chain theory in (6.5) will literally take on a new
dimension, bringing in the intertwinement of three symplectic Jordan chains. On the
other hand, key features like the frame speed, scaling, sign characteristic and reduction
should carry over with appropriate modification.
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9.2 Examples

The results in this paper are universal, and are operational whenever a Lagrangian
system has a suitable characteristic collision, which can be identified via the sign
characteristic diagnostic used in Bridges and Ratliff (2019) and in this paper. There
are examples in the literature where multiphase Whitham modulation theory has been
applied and coalescing characteristics observed, and so the application of the theory
in this paper is relevant. Two examples are Stokes travelling waves coupled to mean
flow (Whitham 1967; Willebrand 1975) and modulation of viscous conduit periodic
waves (Maiden and Hoefer 2016). Both of these examples have special features which
require additional methodology. In the case of viscous conduit waves (Maiden and
Hoefer 2016) the equations are not generated by a Lagrangian so the theorywould have
to be built on averaging of conservation laws. However, at coalescing characteristics
one expects a two-way Boussinesq equation to be generated or analogous equation
with additional non-conservative terms. The case of modulation of Stokes waves in
shallow water (Whitham 1967) involves the full water wave problem and so the class
of PDEs (2.3) has to be modified to account for the vertical variation of water wave
fields. However, the full water wave problem has a multisymplectic structure (e.g.
Chapter 14 of Bridges 2017) and so the theory should go through as in this paper, with
appropriate modification.

9.3 Larger Kernel of E(cg)

In this paper, the basic state has N -phases but the dimension of the kernel of the
N × N matrix E(cg) is one. A different problem arises when the kernel of E(cg) has
dimension greater than one. In this case, the secondary reduction to span{ζ } would be
modified to span{ζ 1, . . . , ζ k} where k ≤ N is the dimension of the kernel of E(cg).
Then, k-additional coupled modulation equations are generated (one linked to each
kernel direction).

9.4 Moving Frames

Whitham theory can also be formulated relative to any moving frame, and some
frame speeds are more interesting than others. Ratliff (2019) shows that even generic
Whitham theory, in the hyperbolic case, re-modulated relative to the appropriate char-
acteristic frame, generates dispersion, on a longer time scale.

9.5 Higher-Order Singularities

Even in the case of two phases the parameter space is at least four dimensional, involv-
ing ω1, ω2, k1, k2, with further degrees of freedom emerging when system parameters
are present. Hence, higher-order singularities are to be expected, e.g. more than two
characteristics coalescing, or the coefficients μ, κ , and K passing through zero. A
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potential rescaling and re-modulation could then be implemented leading to (as yet
unknown) modulation equations replacing the two-way Boussinesq equation.

9.6 Hyperbolicity of Multiphase Modulation

For quadratic Hermitian matrix pencils a general condition for hyperbolicity can be
given. Hyperbolicity meaning all real characteristics. Consider the N -phase case for

E(c)u = 0 with E(c) = DωAc2 + c (DωB + DkA) c + DkB . (9.1)

Let u ∈ C

N be arbitrary and define

α = 〈u,DωAu〉
β = 1

2 〈u, (DωB + DkA) u〉
γ = 〈u,DkBu〉 ,

with 〈·, ·〉 an inner product on C

N . Guo and Lancaster (2005) study quadratic eigen-
value problems in general and applying their definition to (9.1) gives the following.

Definition The quadratic Hermitian matrix pencil (9.1) is hyperbolic if β2 > αγ for
all nonzero u ∈ C

n .

If this condition is satisfied then all the characteristics are real, and no coalescence
can occur. It is expected that the absence of coalescence would be rare. The CNLS
example shows coalescence to be quite common, already with N = 2. For arbitrary
N , the parameter space (ω,k) has dimension 2N and so there is a high probability of
coalescence. On the other hand, the above definition is a useful starting point in the
analysis of multiphase WMEs. In the paper Guo and Lancaster (2005), they go on to
give a number of sufficient conditions, and an algorithm for testing hyperbolicity and
computing all the eigenvalues. These algorithms may be helpful in the study of the
characteristics of multiphase Whitham theory.

9.7 Number of Phases Tending to Infinity

There is a known case wheremultiphaseWhitham equations are hyperbolic. The paper
of Willebrand (1975) derives the multiphase WMEs and takes the limit N → ∞ and
argues that they are hyperbolic in this limit. The argument proceeds by formally
constructing explicit expressions for the leading order nonlinear corrections. Small
divisors and divergence are expected, but only the leading order terms are studied.
When N is small, “splitting of group velocity” is noted in the weakly nonlinear case,
which is equivalent to what is called “coalescing characteristics” in this paper. The
unfolding of this split group velocity may lead to instability. ButWillebrand argues
that the splitting disappears as N → ∞. In the context of this paper, the limit N → ∞
would just replace the matrix pencil E(c) by an Hermitian operator pencil and so
Willebrand’s claimwould be thatE(c) in the case N → ∞ is hyperbolic. It is important
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to keep in mind that this argument is for multiphase modulation of weakly nonlinear
Stokes waves only, but is an intriguing example nevertheless.
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