266 research outputs found
Being Innovative While Being Green: An Experimental Inquiry into How Consumers Respond to Eco‐Innovative Product Designs
Eco‐innovations are an effective way for companies to strategically align themselves with customers' growing environmental concerns. Despite their crucial role, scant research has focused on eco‐innovative product designs. Drawing from the sustainability and innovation literature, this article proposes that in the design of an eco‐innovation, its degree of innovativeness, level of eco‐friendliness, and detachability significantly affect consumers' adoption intentions. This article develops various conceptual models tested through three independent online experiments with U.S. consumers. The findings support the hypotheses and provide useful insights into the underlying mechanisms of how and why consumers respond to eco‐innovative product designs across various high‐tech product categories. Specifically, the results show (1) a positive effect of innovativeness degrees of eco‐innovative attributes on consumers' perceptions of product eco‐friendliness and on their adoption intentions as well as a significant moderating role of consumers' need for cognition (Study 1); (2) a positive influence of eco‐friendliness levels of eco‐innovative attributes on consumer adoption intentions in the case of high‐complexity products but not for low‐complexity products, emphasizing the need to adopt different approaches when developing eco‐innovations to ensure favorable consumer reactions (Study 2); and (3) a significant impact of the detachability of eco‐innovative attributes on consumers' perceptions of trade‐offs between environmental benefits and product functionality and on their intentions to adopt eco‐innovations (Study 3). These findings add to existing theoretical knowledge, provide actionable managerial implications, and identify fruitful avenues for future research
PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation
Nanomaterials have been actively pursued for biological and medical
applications in recent years. Here, we report the synthesis of several new
poly(ethylene glycol) grafted branched-polymers for functionalization of
various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and
gold nanorods (NRs), affording high aqueous solubility and stability for these
materials. We synthesize different surfactant polymers based upon
poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene)
(PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching
lipophilic species such as pyrene or phospholipid, which bind to nanomaterials
via robust physisorption. Additionally, the remaining carboxylic acids on gPGA
or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing
extended hydrophilic groups, affording polymeric amphiphiles. We show that
single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the
polymers exhibit high stability in aqueous solutions at different pHs, at
elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit
remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into
mice, far exceeding the previous record of 5.4 h. The ultra-long blood
circulation time suggests greatly delayed clearance of nanomaterials by the
reticuloendothelial system (RES) of mice, a highly desired property for in vivo
applications of nanomaterials, including imaging and drug delivery
An improved measurement of muon antineutrino disappearance in MINOS
We report an improved measurement of muon anti-neutrino disappearance over a
distance of 735km using the MINOS detectors and the Fermilab Main Injector
neutrino beam in a muon anti-neutrino enhanced configuration. From a total
exposure of 2.95e20 protons on target, of which 42% have not been previously
analyzed, we make the most precise measurement of the anti-neutrino
"atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and
constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These
values are in agreement with those measured for muon neutrinos, removing the
tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
Recommended from our members
First Direct Observation of Muon Antineutrino Disappearance
This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters
Recommended from our members
Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10^(20) protons on target. A fit to neutrino oscillations yields values of |Δm^2|=(2.32_(-0.08)^(+0.12))×10^(-3) eV^2 for the atmospheric mass splitting and sin^2(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Measurement of the neutrino mass splitting and flavor mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of protons on target. A fit to neutrino oscillations yields values of ,eV for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
- …