532 research outputs found

    Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves

    Get PDF
    BACKGROUND: The plant respiratory chain contains several energy-dissipating enzymes, these being type II NAD(P)H dehydrogenases and the alternative oxidase, not present in mammals. The physiological functions of type II NAD(P)H dehydrogenases are largely unclear and little is known about their responses to stress. In this investigation, potato plants (Solanum tuberosum L., cv. Desiree) were sprayed with antimycin A, an inhibitor of the cytochrome pathway. Enzyme capacities of NAD(P)H dehydrogenases (EC 1.6.5.3) and the alternative oxidase were then analysed in isolated leaf mitochondria. RESULTS: We report a specific decrease in internal rotenone-insensitive NADH dehydrogenase capacity in mitochondria from antimycin A-treated leaves. External NADPH dehydrogenase and alternative oxidase capacities remained unaffected by the treatment. Western blotting revealed no change in protein abundance for two characterised NAD(P)H dehydrogenase homologues, NDA1 and NDB1, nor for two subunits of complex I. The alternative oxidase was at most only slightly increased. Transcript levels of nda1, as well as an expressed sequence tag derived from a previously uninvestigated closely related potato homologue, remained unchanged by the treatment. As compared to the daily rhythm-regulated nda1, the novel homologue displayed steady transcript levels over the time investigated. CONCLUSIONS: The internal rotenone-insensitive NADH oxidation decreases after antimycin A treatment of potato leaves. However, the decrease is not due to changes in expression of known nda genes. One consequence of the lower NADH dehydrogenase capacity may be a stabilisation of the respiratory chain reduction level, should the overall capacity of the cytochrome and the alternative pathway be restricted

    Adsorption of Fibrinogen on Thin Oriented Poly(Tetrafluoroethylene) (PTFE) Fibres Studied by Scanning Force Microscopy

    Get PDF
    We have investigated fibrinogen adsorption on ordered poly(tetrafluoroethylene), PTFE, fibres deposited on hydrophilic and hydrophobic silicon substrates. Fibrinogen molecules appear to adsorb with their long axis perpendicular to the fibre direction for PTFE fibres having widths of less than 100 nm. On these thin fibres, fibrinogen apparently forms close packed bands or clusters, consisting of small integer numbers of molecules arranged parallel to each other. On broader (\u3e 100 nm) PTFE fibres, the fibrinogen forms two dimensional networks. The orientation of the molecules in these networks is random in the central flat part of the fibres but perpendicular to the fibre direction at the fibre edges. As a tentative explanation, we propose that the observed orientation may be linked to the radius of curvature of the fibre surface

    Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean

    Get PDF
    The eastern equatorial Atlantic Ocean is subject to interannual fluctuations of sea surface temperatures, with climatic impacts on the surrounding continents. The dynamic mechanism underlying Atlantic temperature variability is thought to be similar to that of the El Nino/Southern Oscillation (ENSO) in the equatorial Pacific, where air-sea coupling leads to a positive feedback between surface winds in the western basin, sea surface temperature in the eastern basin, and equatorial oceanic heat content. Here we use a suite of observational data, climate reanalysis products, and general circulation model simulations to reassess the factors driving the interannual variability. We show that some of the warm events can not be explained by previously identified equatorial wind stress forcing and ENSO-like dynamics. Instead, these events are driven by a mechanism in which surface wind forcing just north of the equator induces warm ocean temperature anomalies that are subsequently advected toward the equator. We find the surface wind patterns are associated with long-lived subtropical sea surface temperature anomalies and suggest they therefore reflect a link between equatorial and subtropical Atlantic variability

    Ubiquinone-1 Induces External Deamino-NADH Oxidation in Potato Tuber Mitochondria

    Full text link

    Formation of Composite Endothelial Cell–Mesenchymal Stem Cell Islets: A Novel Approach to Promote Islet Revascularization

    Get PDF
    OBJECTIVE—Mesenchymal stem cells (MSCs) contribute to endothelial cell (EC) migration by producing proteases, thereby paving the way into the tissues for ECs. MSCs were added to our previously described composite EC islets as a potential means to improve their capacity for islet angiogenesis

    Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass <i>Posidonia oceanica</i>

    Get PDF
    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems

    Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes

    Get PDF
    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients
    corecore