85 research outputs found

    Exploring the Resolution Limit for In-Air Synthetic-Aperture Audio Imaging

    Get PDF
    SONAR imaging can detect reflecting objects in the dark and around corners, however many SONAR systems require large phased-arrays and immobile equipment. In order to enable sound imaging with a mobile device, one can move a microphone and speaker in the air to form a large synthetic aperture. We demonstrate resolution limited audio images using a moving microphone and speaker of a mannequin in free-space and a mannequin located around a corner. This paper also explores the 2D resolution limit due to aperture size as well as the time resolution limit due to bandwidth, and proposes Continuous Basis Pursuits (CBP) to super-resolve.Mitsubishi Electronic Research Laboratorie

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with D-serine in aqueous solution.

    Get PDF
    Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    1:1 Spatially Augmented Reality Design Environment

    Full text link

    Near-invariant blur for depth and 2D motion via time-varying light field analysis

    Get PDF
    Recently, several camera designs have been proposed for either making defocus blur invariant to scene depth or making motion blur invariant to object motion. The benefit of such invariant capture is that no depth or motion estimation is required to remove the resultant spatially uniform blur. So far, the techniques have been studied separately for defocus and motion blur, and object motion has been assumed 1D (e.g., horizontal). This article explores a more general capture method that makes both defocus blur and motion blur nearly invariant to scene depth and in-plane 2D object motion. We formulate the problem as capturing a time-varying light field through a time-varying light field modulator at the lens aperture, and perform 5D (4D light field + 1D time) analysis of all the existing computational cameras for defocus/motion-only deblurring and their hybrids. This leads to a surprising conclusion that focus sweep, previously known as a depth-invariant capture method that moves the plane of focus through a range of scene depth during exposure, is near-optimal both in terms of depth and 2D motion invariance and in terms of high-frequency preservation for certain combinations of depth and motion ranges. Using our prototype camera, we demonstrate joint defocus and motion deblurring for moving scenes with depth variation
    • …
    corecore