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Abstract

SONAR imaging can detect reflecting objects in the dark

and around corners, however many SONAR systems require

large phased-arrays and immobile equipment. In order to

enable sound imaging with a mobile device, one can move a

microphone and speaker in the air to form a large synthetic

aperture. We demonstrate resolution limited audio images

using a moving microphone and speaker of a mannequin in

free-space and a mannequin located around a corner. This

paper also explores the 2D resolution limit due to aperture

size as well as the time resolution limit due to bandwidth,

and proposes Continuous Basis Pursuits (CBP) to super-

resolve.

1. Introduction

Mobile phones are as of yet not capable of seeing in

the dark, through smoke, and around occluding objects.

While there is a race to commercialize time-of-flight sen-

sors [11, 7, 6], mobile phones have readily available au-

dio hardware which can perform audio imaging tasks. This

would be useful for rescue situations and indoor mapping.

[5, 10, 2]

In order to generate a sensing aperture to perform scene

reconstructions, a user moves their mobile phone to a set

of static positions which allows the user to sample a plane.

At each location the phone transmits and receives a signal,

similar to synthetic aperture sonar/radar. The received sig-

nals are then processed (pulse compression) and the data

inverted using backprojection to generate a 3D image.

Figure 3 shows an example of data acquisition. Each

row of the data is a range measurement taken from a mi-

crophone and speaker pair which is moved to another lo-

cation. The range measurements are then backprojected to

form an image. An ideal reflecting point lies on an ellipsoid

in space whose foci are the speaker and microphone. The

distance traveled by the sound is the major axis of the ellip-

soid. Through tomography, it is possible to reconstruct the

location of all reflectors.

Figure 1. In A, a mannequin is placed around the corner from

our system. In B, an audio image returned by the system. One

can see that the hot spot of the audio image is located near where

the reflection of the mannequin should be. In C, a mannequin is

placed directly in front of the system, and in D, the corresponding

audio image.

2. Experiment and Results

We implement mobile-audio imaging by moving a

speaker and microphone on an x-y stage, transmitting a

chirp between 20KHz and 30KHz. While today’s phones

cannot reliably produce sound in this range, microphones

and speakers exist which can easily operate in these ranges.

We move a microphone and speaker pair to 216 positions

(18 columns by 12 rows) in a 1m x 1m 2D plane and per-

form a range measurement at each location (transmit and

receive). We demonstrate two imaging results, one with a

mannequin in front of the setup, and another with a man-

nequin located around a corner. The result with the man-

nequin in front of the setup is shown in Figure 1 in the
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Figure 2. Top, an artist’s vision of synthetic aperture audio imag-

ing, where a user moves a mobile phone in the air and reconstructs

an object around the corner. Graphic Credit Dina Bedri. Left, a

photo of our microphone and speaker pair used (20KHz - 30KHz

bandwidth). Right, 2D positioning rig used in the experiments.

upper-right. The result for imaging of a mannequin be-

hind a corner is shows in Figure 2. The system is able to

see around the corner since sound bounces specularly off

the wall, causing a virtual image of the mannequin to be in

view.

3. Angular Resolution Limit

The diffraction-limited angular resolution of a camera is

determined by its aperture and wavelength of illumination:

θ = 1.22 · λ/D[4]. The same equation applies for the syn-

thetic aperture covered by the motion of the microphone and

speaker, thus a larger area covered leads to more angular

acuity. When using the backprojection method, this defines

the lateral PSF of our system. By covering an aperture of

1m x 1m with λ/2 density, our experiment has a theoretical

rayleigh-limited angular resolution of 0.8cm.

4. Time Domain Resolution Limit

Hardware and physical limitations prevent the pulse

compression step from acheiving a delta response. This

means that an ideal reflection of a sound ping cannot be

localized to a single point in time and is usually spread over

a range. A more complete treatment of the model of how

sound travels in air will start with boundary conditions and

differential equations. In this paper, we will begin with a

simple intuitive model for how a pressure signal in the air

medium travels between a transmitter and a receiver. Here

we assume an ideal reflector k of known position, a speaker

s of known position, an omni-directional microphone m of

known location. The received signal due to propogation in

air is proportional to:

y (t) =
∑K−1

k=0
akφ (t− τk) (1)

where,

• p(m),p(s) and p
(r)
k , respectively, are the 3D locations of

microphone, speaker, and kth reflector.

• τk =

∥

∥

∥
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(m)−p
(r)
k
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(r)
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∥

ν
is the propagation time

delay due to transmission and reflection.

• φ is the time-domain function transmitted by the speaker

• {ak}
K−1
k=0 are the amplitudes of each reflection (based on

material and illumination properties).

In this case, we use a chirp signal instead of an impulse,

since it enables our system to transmit more energy over

a longer time period. The time-shifted signal f is shown

below:

φ (t) = cos
(
ξt2 + ωt

)
1[0,T ] (t) (2)

where ξ relates to the slope of the chirp such that ξ =
2π
T

(f2 − f1) and ω = 2πf1 is the initial frequency. Fur-

thermore, in (2), we use the indicator function defined on

domain D by,

1D (t) =

{
1 t ∈ D

0 t /∈ D
.

We assume that {τk}
K−1
k=0 ∈ [0, T ].

We utilize FMCW processing (multiplication of the

transmitted signal with the received signal and performing a

Fourier transform and a low-pass filter) to recover the shift

τ .

φ(t) = cos(ψ(t))1[0,T ](t)

φ(t− τ) = cos(ψ(t) + θ(t))1[0,T ](t)

where

ψ(t) =
ξ

2
t2 + wt

θ(t) =− ξτt+ ξτ2 − 2πτf1

therefore:
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Figure 3. A flow-chart of the rayleigh-limited reconstruction. In

A, the system transmits acoustic chirps. In B, thos chirps are com-

pressed through FMCW processing [9], and in C, the signals are

reconstructed through backprojection.

φ(t− τ) · φ(t) =
1

2
[cos(φ(t)) + cos(ψ(t))]1[0,T ](t)

and by examining the low-frequency portion by low-

passing above 2f1 −
ξ

2π τ

cos(−ξτt+ ξτ2 − 2πτf1)1[0,T ](t)

Thus τ is encoded into the frequency of the processed

cosine, and can be recovered via a fourier transform. In-

creasing the duration of the transmission window T has the

effect of reducing ξ, thus the limit in resolution depends

only on f1, f2.

4.1. Physical Bandwidth Limit

There is a hardware limit to the bandwidth of sound

which can be transmitted in-air. This limit is caused by

absorption in the air of high-frequency signals. The atten-

uation has been characterized by the following equation,

which means the attenuation of a signal in air is nearly

100dB at 50Khz at over 1m [1]:

Attenuation = α · L · f , where:

• α is the attenuation coefficient of air in units db
MHz·cm

• L is the distance propagated

• f is the frequency of the sound

The limitations on the frequencies which can be reliably

transmitted through the medium impose a bandwidth limit

on the signal which is transmitted. This bandwidth limit

causes an ambiguity in the estimation of the signal delays

and thus the estimations for the distances to the target. This

puts the rayleigh-limited time-domain resolution to 10cm

for the 20KHz - 30KHz range of the audio spectrum.

5. Model-based Super-resolution

Due to physical hardware limitations for in-air imaging,

we turn to computational methods to address the imaging

problem. In the following sections, we describe how sparse

reconstruction can theoretically extend the resolution of the

system, and show simulations which achieve higher theo-

retical resolution.

5.1. Backprojection Matrix Coherence

One can use model based methods for time-domain

super-resolution by creating a dictionary of shifted signals

and searching for the support within the dictionary and the

corresponding coefficients that describe the received signal.

One method for recovering the sparse vector x is through

Basis Pursuit denoising (BPDN) which uses the ℓ1 penalty

instead of the expensive-to-compute ℓ0 penalty. BPDN has

advantages over greedy methods since it is guaranteed to

converge to the global minimum solution[8],

x⋆ = argmin
x

‖b−D∆x‖
2
2 + λ‖x‖1. (3)

Using sparse recovery algorithms, it is possible to find

the best sparse representation of the signal within resolution

of the shifts of the dictionary. However, this approach is not

guaranteed to work since the signal may lie in an off-grid

location. In order to reduce the chance of this happening,

one can form finer and finer sampling grids, however, this

leads to an increase in the coherence of the dictionary. The

algorithms can have a hard time choosing which atom is the

correct one, especially in the presence of signal or quantiza-

tion noise. The resolution of the estimation of the parame-

ter τ is again limited by the coherence of the matrices using

these methods.

The coherence of a matrix is defined as follows [8]:

µ (D∆) = max
1≤k,j≤m,k 6=j

d⊤
k dj

‖dk‖ ‖dj‖
. (4)

5.2. Continuous Basis Pursuits

Continuous Basis Pursuit (CBP) overtakes on-grid meth-

ods by introducing a bilinear model which finds the atoms

of the dictionary which approximates the signal the best

and then improves that approximation by finding a coeffi-

cient for a corresponding dictionary which perturbs the ap-

proximation closer to the original signal. The result is a

recovery which is more accurate, and for sparse signals, re-

sults in a more sparse solution than BPDN for off-grid ele-

ments. In order to understand CBP, one can think of any N-

dimensional signal as a point in N-dimensional space. The

set of all time-domain shifts of the signal form a manifold

in N-dimensions. On-grid solutions approximate this man-

ifold by uniformly sampling it. CBP improves upon this

by forming an approximation of the shape of the manifold

(either Taylor or polar) and perturbing the sample points to

more accurately represent a shifted signal.
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Figure 4. Results of super-resolution in 1 dimensions. In A, approximations of the sum of shifted versions of ground-truth decaying

exponential signals (blue) and the result of sparse recovery techniques (Basis Pursuit DeNoising [BPDN] magenta, Continuous Basis

Pursuit Taylor [CBPT] green, Continuous Basis Pursuit Polar [CBPP] red). In B-E, recovered time shifts and their coefficients. From

upper left clockwise: True shifts in blue, upper-right, CBPP in red, most accurate, Lower Right, BPDN in magenta, Lower Left, CBPT in

green. Grid points are in black.

Figure 5. Result of 2D super-resolution. In A, simulation set-up, microphones in green, speakers in red, and reflectors in blue. On the

right, reconstruction using Continuous Basis Pursuit Taylor (B) and FMCW image (C).

6. Comparing Algorithms for Image Recon-

struction

In order to evaluate super-resolution, backrpojection

(linear inversion), BPDN, and CBP were compared for re-

construction. There is a challenge in comparing the perfor-

mance of algorithms, especially since they behave differ-

ently with different reconstruction parameters (λ, ∆). Fur-

thermore, comparing reconstructions is difficult since con-

tinuous basis-pursuit returns vectors which are not on-grid,

thus recovered vectors cant be directly compared by dis-

cretely by taking the norm of the difference of the signals.

In order to measure accurate signal reconstruction, a simple

error term is defined:

E

(
Θ̃,Θ

)
=

∑K−1

k=0
(|τ̃k − τk| ãk)

2
+ ‖b− b̃‖22, (5)

where Θ̃ = {ãk, τ̃k}
K−1
k=0 denotes the set of estimated pa-

rameters and Θ denotes the ground truth. τ̃k are ordered

such that
∑K−1

k=0 ||τ̃k − τk|| is minimized. b is the ground-

truth measured signal, and b̃ is the signal produced by the

recovered parameters Θ̃.

The error function is a trade-off between accurate time-

shifts and accurate data-matching. If the recovered time

shifts are inaccurate and the data is matched perfectly, then

the left part of the error will grow high. If the time shifts and

coefficients are accurate, then both the left and right parts of
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the error will be zero. If the time shifts are accurate but the

coefficients are zero due to lambda being too strong, then

the right part of the error function will grow. The following

signal was used as base-function in the 1D simulation (for

ease of visualization):

y (t) = 1[τ1,∞) (t) (t− τ1) e
−α(t−τ1)

+ 1[τ2,∞) (t) (t− τ2) e
−α(t−τ2).

6.1. Comparing 1D recovery

1D recovery is shown in Figure 4 for BP, BPDN, CBPT,

and CBPP. One can see that CBPP performs the best and

most accurately detects the time shifts in the most sparse

manner. BPDN approximates the signal with two coeffi-

cients on the grid points closest to each signal point. CBPT

also approximates the signal with two coefficients, however

the coefficients are closer to the signal. Figure 6 shows the

performance of each of the algorithms with different delta

(dictionary spacings) and lambdas (regularization parame-

ters). One can see that as the dictionary spacing increases,

the error increases. Similarly, for each delta, there is only

one lambda which is optimal. CBP-Taylor and CBP-Polar

both outperform BPDN such that for each delta, there is a

corresponding lambda in each of the other two algorithms

with lower error.

6.2. Comparing Image recovery

In order to simulate the audio-imaging process, a 2D

room was modelled with a set of 10 microphone/speaker

pairs and a two reflectors located 10cm apart. Each mi-

crophone/speaker measures the reflected signal from the

system separate from the other pairs. The algorithms are

applied to find range profiles at each measurement and a

backprojection algorithm is used to reconstruct the image.

One can see in Figure 6 that the model-based algorithms

(BPDN, CBP) perform much better than FMCW process-

ing and it is possible to discern two peaks. Furthermore,

the off-grid CBPT reconstruction performs better than the

on-grid BPDN reconstruction. One can see better defined

peaks at the reflectors.

7. Discussion

There are many uses for mobile audio imaging, including

searching for persons trapped in rubble, room reconstruc-

tion while your phone is in your pocket, mapping out caves,

automated vehicles, depth imaging, and kaleidoscopic re-

constructions of objects. However, there are many resolu-

tion limits due to bandwidth. On the high end, high fre-

quency sound does not carry in air, and on the low-end, the

system must operate outside of the human hearing range (so

it is not disturbing).

CBP is effective in finding a more accurate representa-

tion of off-grid signals, however the approximations neces-

Figure 6. Heat maps showing error associated with varying deltas

(grid spacing) (Red = large error), lambdas (regularization param-

eters) and algorithms. In A, Continuous Basis Pursuit Taylor, In

B, Basis Pursuit Denoising

sary to perform CBP limit the types of signals one can use.

The CBP Taylor approximation assumes the function f is

differentiable on all points t, thus a discontinuity can ruin

the reconstruction. Furthermore Ekanadham [3] highlights

that the polar approximation deteriorates as the signal in-

creases in bandwidth.

A limitation to the CBP approach to audio imaging is

the failure of the assumption of sparsity in the scene. In the

super-resolution reconstructions, the scene was assumed to

consist of sparse-reflectors. Real-life scenes, however, are

composed of complex objects with curvatures and shapes.

The ideal omnidirectional reflector assumption breaks down

if you have a reflecting plane or surface. In-air scenes usu-

ally consist of a small number of objects, thus future work

will explore modelling the scene geometry as a set of prim-

itive shapes of varying sizes and locations, and use bilinear

or trilinear sparse recovery to estimate the shapes.
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