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1 Introduction 

 

Fig. 1 Sunken relief of ancient Egypt 

Relief is a type of sculptured artwork that is carved into a plane/surface or created 

by removing the unwanted pieces of material [1]. There are three types of reliefs 

[2]: high relief, bas-relief and sunken relief. Sunken reliefs depend largely upon 

the shape which do not protrude from the surface, but are carved into it. In ancient 
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Egyptian times, it was commonly used to illustrate stories and show the greatness 

of the pharaohs (as shown in Fig. 1). It is also used for inscriptions and engraved 

gemstones. Nowadays, sunken reliefs are widely used to decorate the surfaces of 

furniture, walls, buildings, and jewellery.  

To produce a sunken relief, the sculptor carves the relief within a deeply incised 

line. As a result, the contours are sunk below the surrounding surface whilst 

leaving the highest parts on the surface level [2]. Fig. 1 shows that the feature 

lines are important for depicting the edges of the objects; such lines represent 

most visual features of a sculpture. Because lines are flexible and concise, they are 

considered the best way to represent general and abstract figures. In addition, in 

order to generate a realistic sunken relief, the smooth height transition between 

edges is also essential. Both the lines and the height transition are combined 

together to emphasise the presence of a 3D object. 

Lines play an important role in forming a sunken relief. The external contours are 

defined as the principal lines, which are determined by the shape of the object 

itself and the viewer’s perception. In addition, there are several other linear 

features which may be present in a relief. These are usually referred to as the 

interior lines because they are all contained within the overall shapes bounded by 

the external contours. Edges formed due to the connection of planes/surfaces at an 

angle may be rendered sharply so that they become a linear feature. These internal 

feature lines are defined as the secondary lines in a real sunken relief. Last but not 

the least, there are lines which are not derived from the three-dimensional form of 

the relief, but are overlaid to highlight the primarily graphic features [2].  

Most existing research on relief generation is concerned with creating a smooth 

relief surface from either image or geometry input. Such a surface has a shallow 

depth but can deceive the human perception to a fake 3D shape with a much 

greater depth ratio. Few works have paid attention to the importance of lines. Our 

work introduces a novel framework that uniquely includes feature lines into relief 

creation, which distinguishes our work from its predecessors. 

In our framework, we start from a full scale geometric mesh of a 3D object. In 

consequence, the user can benefit from abundant 3D models available either 

online or from laser scanning. It is more effective to operate in the image space 

than on the geometric mesh. Therefore, we transform the information conveyed 

by the mesh into three different images as three input layers in our framework: a 
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line drawing image which provides input for contour lines; a rendered Lambertian 

image which shares the same light direction of the relief sets the visual cues; and a 

depth image which conveys the height information. By matching the target relief 

surface with the three given input images by an optimization process, we are able 

to maximise the presence of features in a sunken relief. 

Our work has the following contributions: 

� a novel framework to combine multiple channels as inputs for relief 

generation; 

� incorporation of lines into smooth relief surface carving; 

� combination of visual cues and real geometric information into the created 

relief. 

Previous works use a single input only. They focus on either the visual cues by 

transforming an image into a relief or the geometric shape by compressing the 

geometry into a plane. Using multiple input channels, our method offers more 

detail and features consequently permitting further art stylisation.   

The paper is structured as follows: Section 2 reviews the relief generation 

techniques and line drawings from 3D models. Section 3 outlines the structure of 

our algorithm. Section 4 discusses how to prepare inputs from a 3D object for 

sunken relief generation. Section 5 derives the mathematical formulation for 

height optimization from multiple inputs. Section 6 demonstrates some results and 

Section 7 concludes the paper.  

2 Related work 

2.1 Digital relief generation techniques 

Digital relief generation techniques are generally classified as reliefs from images, 

direct 3D sculpture systems and shape transformation [3]. Digital image 

processing can generate a relief style image via direct operations on pixels. 

However, the results of image processing give erroneous three-dimensional 

information that does not actually convey real height data and has little use in 

relief production.  

In 2001, Perry and Frisken [4] developed a digital character sculpting system 

named Kizamu. It is mainly based on adaptively sampling distance fields (ADFs). 

It also incorporates a blend of new algorithms representing significant technical 
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advances in modelling, introducing novel user interactions. Sourin [5,6] 

developed methods using programmed functions to represent shapes and 

manipulations. These function-based digital sculpting systems can produce 

carved-in sunken reliefs. Pasko et al. [7] also proposed a method to carve reliefs 

procedurally using the function representation of geometric objects. The 

difference is that our method processes 3D models directly while these digital 

systems create reliefs from scratch, which make them more comparable to the 

geometric modelling tools.  

It is laborious and time-consuming to generate reliefs using 3D modelling 

software and sculpting system. To improve the efficiency, a few methods have 

been developed to generate reliefs that convert existing 3D models into relief 

models. In 1997, Cignoni et al. [8] developed a computer-assisted relief modelling 

system for generating 3D bas and high reliefs from 3D surface models. Later on, 

Belhumeur et al. [9] investigated the ambiguity of bas-relief generation with 

respect to surface reconstruction. It is reported that a linear compression of the 3D 

geometry can produce relief ambiguity but such implementation often suffers 

from loss of subtle details when the geometry is complicated. Research in [10,11] 

addressed the problem as geometry processing compared to the HDR (High 

dynamic range imaging [12]) or tone-mapping image compression. Weyrich et al. 

[13] introduced a perceptually-motivated compression algorithm for relief 

generation. Later, Kerber et al. [14] improved their previous bas-relief generation 

work by adopting a bilateral filter to achieve good compression ratios without 

compromising the quality of surface details. This work was further enhanced to 

support artists and enthusiasts in creating bas-relief artworks from virtual scenes 

[15]. Sun et al. [16] also developed an automatic system to generate bas-reliefs 

based on adaptive histogram equalization (AHE). All the aforementioned methods 

in this paragraph are related to flattening the models into a scaled height field with 

limited depth. 

2.2 Shape from shading 

Shape-from-shading, an approach to reconstructing the original 3D shape from a 

single image has been developed [17,18,19]. Shape-from-shading may be used for 

producing high reliefs but it requires a lot of user intervention. Wu et al. [20], 

using an altered shape-from-shading method, presented an interactive system for 
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reconstructing surface normal from a single image. Based on this work, Wang et 

al. [21] developed a method to form a bas-relief surface from an image input. 

Alexa and Matusik [22] proposed a method to generate relief surfaces 

automatically that could produce bas various images under different directional 

illumination. Although their method had an intrinsic link to shape from shading 

[18,17]; the introduced discrete model with necessary degrees of freedom could 

overcome the theoretical limitations in shape from shading. The method in [22] 

can take multiple images as input as we do in this paper, however it focused on 

the illumination conditions while our approach is designed for including contour 

lines with other visual cues into a sunken relief.  

2.3 Lines in sunken relief and 3D line drawings 

Line drawings refer to extracting lines (the most obvious features of the model) 

from 3D models. The extracted lines could be applied to artistic stylization and 

abstraction work with applications ranging from illustrations to cartoons and 

gaming scenes.  

Our work is inspired by the line drawings from 3D models since sunken reliefs 

depend considerably upon the carved lines in conveying the surface shape. Lines 

can convey other different things, including various combinations of lighting, 

materials, surface markings, and discontinuities [23]. 

The concept of contours and its connection to human perception was explained in 

[24]. Such contours in drawings are analogous to the principle lines in sunken 

reliefs. Later on, creases were used was and were regarded as a big improvement 

for line drawings from 3D objects [25,26,27]. Creases are sharp features defined 

on the mesh surface. Suggestive contours [28,29,30], which are analogous to the 

interior lines in sunken reliefs, are minor on-surface features similar to contours 

that are view dependent and help to denote the local shape. Other drawing 

elements, such as hatching, are prevalent in more sophisticated line drawings. 

Many small lines can be combined in such a way that they simultaneously stylize 

the tone and material [31,32]. For a more detailed review on line drawings, we 

refer to [23].  

Algorithms for 3D line drawings can extract exactly the lines we need in 

generating the edges of a sunken relief. However, transforming them into a 3D 

carving in conjunction with smooth height transition is an unsolved problem. 
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Current relief related research pays little attention to sunken relief generation, and 

it focuses on the recovery or creation of the height information. Our work, on the 

other hand, combines the line drawings input with height generation that visually 

highlights the shape feature on the generated sunken reliefs. To our knowledge, 

this is the first attempt to implement a method designed for sunken relief 

generation. 

3 Outline of Method  

Our work aims to generate sunken reliefs from a known 3D object. Most 

important to note, we will overlay feature lines on the generated reliefs, thereby 

further enhancing the visual information conveyed to the viewer. 

 
 

Line drawings 

  

 
 

3D object 

 
 
 

 

 
 

Final result 

 
Rendered image 

 
 

Depth image 

  

Fig. 2 Procedures of the proposed method. 

A 3D surface carries more information than a single image does [22]. In our 

implementation, we start from a triangular mesh by translating it into multiple 

inputs: a picture of plain line drawings, an image rendered using Lambertian 

shading, and a depth image. These inputs are combined together in a composition 

procedure to produce the final relief art piece. These procedures are illustrated in 

Fig. 2. The input of line drawings helps to create feature lines in the sunken relief 

at the desired places. The other two inputs work in a conjugate manner to 

maintain a smooth relief surface.  

4. Input Pre-processing 

4.1 Line drawings Input 

There exists a large body of literature addressing the problem of extracting line 

drawings from exiting 3D models [25, 28, 31]. Many works contribute to the 

generation of different stylization and content related drawing, which is beyond 
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the scope of our discussion. As the lines in the sunken relief highlight the 

contours, we only need to extract the plain line drawings. No stylization is needed. 

Fig. 3 shows an example of the line drawings we created from a 3D mesh. 

Two types of lines are included in our line drawings: contours (occluding contours 

and silhouettes) whose definition is view-dependent and suggestive contours 

whose definition depends on the higher-order differential properties. We use an 

object-space algorithm developed in [28] to extract the line drawings. A brief 

summary of the algorithm is shown below. 

Contours: Given a smooth surface, the contour lines are defined as a set of points 

that lie on the surface and whose surface normal is perpendicular to the view 

vector:  

0)( =⋅ vpn                                   (1) 

p is a point on the surface, n is its normal and v is the view vector. This set of 

points form disconnected curves on the surface. By projecting the visible part of 

the lines onto the image plane, we produce a line drawing defined by the 

occluding contours and silhouettes.  

Suggestive contours: Suggestive contours relate to the ridges and valleys as 

inflection points from a particular view on the surface, which involve computation 

of the local extrema of the curvature. A direction vector w is defined as the 

projection of view vector on the tangent plane at point p.  

vpnv
vpnv

w
⋅−
⋅−=

)(
)(

                            (2) 

It is noted that the local minima of vpn ⋅)( in direction w suggests a possible 

location on a ridge/valley. This local minima corresponds to the zero value of the 

directional derivative of vpn ⋅)( along direction w at point p where the second 

order directional derivative along w is positive: 

0))(( =⋅∇ vpnw , and 

 0))(( >⋅∇∇ vpnww                           (3) 

where w∇ denotes the directional derivative along w. This condition is also 

equivalent to the zero value of radial curvature rκ along direction w where the 

directional derivative along w of the radial curvature is positive:    
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0=rκ , and 

0>∇ rκw                              (4) 

The suggestive contours are generated by projecting those points on the surface 

that satisfy the aforementioned condition.  

 

   

(a) Input Armadillo model (b) Line output without 

smoothing 

(c) Line output with Laplacian 

smoothing 

Fig. 3 An example of Armadillo model. 

In our practice, we notice that direct usage of the line drawings generated from an 

arbitrary model may not be practical. Too many strokes make the relief appear 

bumpy, as some important geometric features are concealed or broken by 

redundant engraved lines. To overcome this issue, the user is provided with a tool 

to control the input by filtering out the unwanted details. We choose the Laplacian 

smooth operator to remove those unwanted strokes in the selected area. There are 

a number of different approximations for the laplacian operator; each has its 

special usage. Hahan [33] describes its discrete approximation. 

1( )

1
( ) ( )i ij j i

j N iij

L x w x x
w ∈

= −
Σ ∑                            (5) 

where wij is the weight for edge defined by (xi, xj). There are several schemes to 

define the weights wij. Among those schemes, cotangent weight: 

, ,( , ) cot( ) cot( )i j i jw i j α β= + , is widely used, where ��,� and ��,�  are the angles 

opposite to edge (xi, xj). An example of the practice of controlling the stroke 

density is shown in Fig. 3(b) and 3(c). 

Once the line drawings is produced, additional erosion and dilation operations that 

directly act on the pixels can be applied to tidy the image up by removing the 
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noise and increasing the volume of the lines making them more conspicuous (see 

Fig. 4). 

 

(a) Initial line drawings        (b) After processing with erosion and dilation 

Fig. 4 Processing the extracted lines. 

4.2 Lambertian shading input 

Images rendered with the Lambertian model are used as one input source to help 

recover the height information in the relief. The pixel value I is computed from 

the dot product of normal n and light direction m which point from the surface 

point toward the light source:  

 ))()(( pmpn ⋅=αI                                 (6) 

where α is the intensity of the light.  

Image I implicitly codes the surface normal at each point; it helps to recover the 

height information as the change of the normal provides essential information for 

the perception by human eyes. In our practice, we align the light source with the 

view point, which means we actually render vpn ⋅)( . In the production process, the 

light direction can align with the real setting for the relief display accordingly to 

allow the albedo of the generated relief in line with the geometry exactly.   

4.3 Depth image input 

It is beneficial to start from a 3D mesh as it provides the height information. 

Belhumeur et al. [9] suggested that a linear compression of the height could lead 

to ambiguity for some particular view points of the generated relief. Instead of 

using the simple linear compression approach, we use optimization approaches 

described in Section 5 to find a robust solution. Using the height information as 

input, we simply render its depth on the image projection plan as a grey image. 
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5 Relief Height Generation 

To generate a relief, we initiate our inputs by translating a 3D object into three 

separate images: a line drawing, a Lambertian shaded image, and a depth image. 

Those images are generated from the same view point and on the same projection 

plane to ensure that they are perfectly aligned with each other in terms of their x, y 

coordinates in the pixel domain. The image is set to have a size of m by n.  

 

  
Pixel 

 

 
Vertex 

Fig. 5 The surface discretization of the relief in relation to pixels of an input image, where red 

circles represent the vertices’ locations right on the corners of pixels. 

In a classic fashion, the discrete surface of a relief is created from an array of 

points that align with the pixels in the input image and their height is adjustable 

accordingly of generating a smooth shaded surface. Alexa and Matusik [22] 

suggested a new arrangement of using four connected triangles to calculate the 

value at a given pixel, where a pixel of the input image is modelled as a small 

pyramid in the relief. In our paper, we selected a staggered layout as shown in Fig. 

5, where the actual relief grid for storing height data is selected by shifting the 

pixel grid in x and y directions for half a pixel size.  

 

We define the pixel value of the relief grid node (the red circle in Fig. 5) at (x, y) 

by averaging the values of its four pixel neighbours, 
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we can define the gradient operation of the intensity at the given grid location (x, 

y) using the same four pixel values as 
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Alternatively, we can define the gradient operation of the height value at the pixel 

location in a similar compact fashion when we estimate the surface normal in 

section 5.2. Such compact layout helps to increase the resolution for our 

reconstruction of the relief surface. In the following, we describe how to derive an 

independent energy function for each of the aforementioned inputs. 

5.1 Depth input  

With respect to the input depth image, it is possible to transform it into a piece of 

relief by a linear compression. Such direct operation may cause loss of local 

features and the resulting relief could look dull due to the lack of depth 

incorporated information. We process the height information with a non-linear 

compression by recovering the surface from computing the Poisson equations.    

Let us denote the depth value at position (x, y) as Id(x, y). The second order 

derivative value is computed by: 

)( dIGg ∇⋅∇=                                 (9) 

G is a nonlinear high dynamic compression function [12], which takes the 

following form: 

( )
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                           (10) 

γ and β jointly control the compression ratio. We set γ=0.1 and β=0.9 in our 

experiments. 

We then reconstruct the relief surface by solving the following Poisson equations, 

0),(2 =−∇ gyxh                             (11) 

Here h(x, y) specifies the discrete height distribution. This Poisson equation can 

be numerically resolved. However, in order to integrate our solution with all three 

inputs, we define the energy terms and find the solution by minimizing the overall 

energy.   

In this way, we have the energy term that relates to the depth image input as 

follows: 
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5.2 Lambertian image input 

Let us denote L as the light source. )(pmL α= , where α is the light intensity and m 

is the light direction at point p. The albedo (or the reflection radiance) at the point 

is  

nL ⋅=I                   (13) 

with n as the surface normal at the point.  

Using the staggered grid layout as shown in Fig. 5 to estimate the reflection 

radiance I of the relief at a pixel point (x+1/2, y+1/2), we can use the four height 

values at the pixel’s corners to compute the normal direction first. We can write 

the estimated normal as 
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n  as the scale factor to normalize the normal vector. In the latter 

optimization steps, we need to linearise the system by estimating the scale factor 

with the results from the previous iteration rather than computing it at the current 

time. The scale factor is initiated as 1 when computing starts. Given n as the 

normal we can compute the reflection radiance pixel by pixel using equation (13). 

The input Lambertian image has the intensity value at a given position (x+1/2, 

y+1/2) as IL(x+1/2, y+1/2). Recalling our staggered grid setting, we note that both 

the estimated reflection radiance and the intensity image are defined at the pixel 

grids and their gradients are defined at the relief grid nodes by equation (8). Using 

the image gradient compression method [12], we can have the compressed image 

gradient of the input as )( LIG ∇ , where the compression function is defined in 

equation (10). We expect the gradient of the reflection radiance identical to the 

compressed input value, that is 

0)(),( =∇−∇ LIGyxI                         (15) 

We therefore define the related energy term to the Lambertian image input as 

follows, 
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5.3 Line drawings input 

To generate the engraved line effect for a sunken relief, we include a separate line 

drawing input layer. We define another energy item specially associated to this 

input. Given the line drawings, we first initiate a stencil based on this. The stencil 

is an image whose strokes are one pixel wider than those in the input. We denote 

Iw(x+1/2, y+1/2) as the pixel value at position (x+1/2, y+1/2) of the line drawings 

input. The relief grid value S(x, y) of the stencil template is defined as follows, 
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The stencil value is zero only when all of its four neighboring pixels are zero.   

Using stencil S, we can filter out the influence of those pixels not adjacent to a 

given stroke to avoid unnecessary computation. In order to engrave lines on the 

relief according to the line drawings input, we expect the following relationship 

holds.     

( ) 0)(),( =∇−∇⋅ wIGyxIS                 (18)  

I being the intensity of the reflection radiance calculated by equation (13) whose 

values are defined at the pixel grid and whose gradients are defined at the relief 

grid and G is the nonlinear compress function of equation (10).  

Therefore, we have the definition of the energy term for the line drawings input 

as, 
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5.4 Compositing relief by minimizing the energy 

To recover the height information, we minimize the superposition of all existing 

energy terms with respect to the height values at the corners of the pixels. The 

overall energy is written as follows: 

wwLLdd EwEwEwE ++=           (20) 
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This illustrates that the weighting coefficients control the influence of each term. 

The gradient of the reflection radiance nonlinearly depends on the height 

alternation. This dependency is linearised by estimating the scale factor which 

normalizes the normal vector by the results from previous optimization step.  

The optimization problem is defined as,  

E
h

min
 

,0.. <hts  

maxhh <−                            (21) 

The constraints of height ensure the relief is sunk into a given flat plane. hmax 

explicitly specifies the maximum depth that can be carved into the plane. 

An alternative way of regulating the relief carving depth is to penalize the small 

height value. It can be achieved by including an additional energy item Eh into the 

overall energy computation. 

( )∑∑
= =

−=
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n

y
h hyxhE

1 1

2*),(
                   (22) 

with ( )),(1log* yxhh θθ −−= , where θ controls the degree of compression. 

6 Results  

Our algorithm is capable of providing relief models as triangular meshes. Such 

meshes can be further simplified for less storage or to lower the computational 

cost for future operation. Other post processing steps, such as texturing and 

shading can be added to create further embellished results.  

As shown in Fig. 6(a), a plain carved relief generated only includes the line 

drawings input. Fig. 6(b) and Fig. 6(c) represent our composting results with all 

inputs. They have different depths of carving. It is noted that when combining 

both lines and the surface together, the relief looks much more convincing. 

Fig. 7 illustrates the results from different line drawings inputs with and without 

Laplacian smoothing. We can see that redundant strokes of input make the result 

(Fig. 7(a)) appear bumpy and hide the main shape features at some point, which 

can be enhanced (see Fig. 7(b)) with a mesh smoothing process before extracting 

the counter lines when preparing the line drawings input.  
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(a)Lines only 

 

(b)Shallow depth 

 

(c)Deep depth 

Fig. 6 Comparison of reliefs with different inputs 

Fig. 8 demonstrates the generated bas reliefs with different approaches: (a) by 

Cignoni et al.[8], (b) Kerber et al. [11], (c) Kerber [14], and (d) Sun et al.[16]. 

One can see from Fig. 8(a) that the simple linear compression is not sufficient for 

relief generation as many important features are missing. The others preserve the 

details well, which could be applied to generate sunken relief by simply shifting 

the height into its surface without highlight of counter lines. The results created by 

direct sinking a bas-relief would be compromised and degenerated because the 

important feature lines with carved effects are missing, a factor upon which 

sunken relief mostly relies. The difference between our method (Fig. 7) and others 
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(Fig. 8) is self-evident. Our approach benefits from using the contour lines, which 

impresses the presence of 3D features and addresses more variations in the art 

forms. Such lines are organically integrated with the smooth surfaces. 

  

(a) Initial lines input        (b) Laplacian smooth 

Fig. 7 Comparison of reliefs with different line density. 

 

(a)                       (b) 

 

(c)                          (d) 

Fig. 8 Bas-reliefs produced by the methods of (a) Cignoni et al. [8], (b) Kerber et al. [11], (c) 

Kerber [14], and (d) Sun et al. [16]. 

Fig. 9 shows multiple results we have created with our method using different 3D 

models. It demonstrates that our method is robust in handling both simple 

abstraction forms (Fig. 9(a), the Pear), and complex geometric features (Fig. 9(d), 

the Buste). Very low frequent but smooth features like the muscles along the 

shoulders of the horse or the neck of the pear could hardly be preserved if only the 



18 

height information is taken into account. The example of the heptoroid shows that 

the depth order remains visible and correct. 

 

 

 

(a) Pear model 

 

 

 

 

(b) Heptoroid 

 

 
  

(c) Horse 

 

 

 

 

(d) Buste 

Fig. 9 Sunken relief results 

 

In our experiment, different 3D meshes are used as inputs to create the sunken 

reliefs (Fig. 6, 7, 9). The user is able to control the sunken relief outputs with 
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different settings in preparing their inputs. The PC we used is HP Workstation 

4300, with Intel Pentium Dual CPU 3.2GHz and 2GB RAM, which is equipped 

with NVIDIA GeForce 7900 GTX video card. It takes about 6-20 seconds of 

processing time to create a relief using input images with resolution of 1024x768. 

For example, the cow model (Fig. 6(c)) was created with 6.67 seconds and 

Armadillo model (Fig. 7((b)) with 18.07 seconds. The variance of time depends 

on the resolution as well as the complexity of the reliefs. As we have implemented 

our algorithm in Matlab, we can foresee a potential improvement of performance 

when rewriting the code in C++.  

7 Conclusion 

In this paper, we have proposed a method to generate sunken reliefs using 3D 

models as input. Our experiments show that the combination of lines and height 

transition can effectively generate satisfactory sunken relief results. Presented in 

the digital form, the generated 3D mesh for the resulting sunken relief can be used 

as input of design software for further refinement or can be directly used for 

machining a real piece of relief. Such relief form can also be used as references or 

prototypes for craftsmen in their actual carving practices. 

Two major factors are involved in generating a sunken relief: feature edges and 

smooth height transition, prepared as separate inputs from a known 3D mesh. In 

the composition step, we minimize the overall energy of the related items to create 

the height field for smooth surfaces as well as incorporate the lines into a relief.  

Although our method starts with a 3D object, the generation of the relief is based 

on image-like inputs, implying that our method can be directly adopted for relief 

generation from images. It is possible to extract feature lines and contours from a 

2D image using exiting techniques, which makes our method feasible for sunken 

relief generation by including the images as additional input along with the 

original image.  

Currently, our work is limited to creating sunken reliefs with certain line types 

(contours, creases etc.). It would be useful, but also challenging to stylise the 

relief with texture details to reflect the difference derived from the various carving 

tools used. Such work will be investigated in our future work.  
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