9 research outputs found

    Large-scale docking predicts that sORF-encoded peptides may function through protein-peptide interactions in Arabidopsis thaliana.

    Get PDF
    Several recent studies indicate that small Open Reading Frames (sORFs) embedded within multiple eukaryotic non-coding RNAs can be translated into bioactive peptides of up to 100 amino acids in size. However, the functional roles of the 607 Stress Induced Peptides (SIPs) previously identified from 189 Transcriptionally Active Regions (TARs) in Arabidopsis thaliana remain unclear. To provide a starting point for functional annotation of these plant-derived peptides, we performed a large-scale prediction of peptide binding sites on protein surfaces using coarse-grained peptide docking. The docked models were subjected to further atomistic refinement and binding energy calculations. A total of 530 peptide-protein pairs were successfully docked. In cases where a peptide encoded by a TAR is predicted to bind at a known ligand or cofactor-binding site within the protein, it can be assumed that the peptide modulates the ligand or cofactor-binding. Moreover, we predict that several peptides bind at protein-protein interfaces, which could therefore regulate the formation of the respective complexes. Protein-peptide binding analysis further revealed that peptides employ both their backbone and side chain atoms when binding to the protein, forming predominantly hydrophobic interactions and hydrogen bonds. In this study, we have generated novel predictions on the potential protein-peptide interactions in A. thaliana, which will help in further experimental validation

    Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map

    No full text
    Identifying the sources of natural variation underlying metabolic differences between plants will enable a better understanding of plant metabolism and provide insights into the regulatory networks that govern plant growth and morphology. So far, however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and morphology. In an effort to identify causal candidate genes in the QTLepi regions or their putative trans-targets we performed in silico small RNA and qPCR analyses. Differentially expressed genes were further studied by phenotypic and metabolic analyses of knockout mutants. Three genes were detected that recapitulated the detected QTLepi effects, providing evidence for epigenetic regulation in cis and in trans. These results indicate that epigenetic mechanisms impact metabolic diversity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map

    A suppressor of axillary meristem maturation promotes longevity in flowering plants

    Get PDF
    Post-embryonic development and longevity of flowering plants are, for a large part, determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. The genes that are associated with AM maturation and underlie the differences between monocarpic (reproduce once and die) annual and the longer-lived polycarpic (reproduce more than once) perennial plants are still largely unknown. Here we identify a new role for the ArabidopsisAT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in monocarpic Arabidopsis and tobacco. Accordingly, in Arabidopsis grown under longevity-promoting short-day conditions, or in polycarpic Arabidopsis lyrata, expression of AHL15 is upregulated in AMs. Together, our results indicate that AHL15 and other AHL clade-A genes play an important role, directly downstream of flowering genes (SOC1, FUL) and upstream of the flowering-promoting hormone gibberellic acid, in suppressing AM maturation and extending the plant鈥檚 lifespan.</p
    corecore