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Abstract

Several recent studies indicate that small Open Reading Frames (sORFs) embedded within

multiple eukaryotic non-coding RNAs can be translated into bioactive peptides of up to 100

amino acids in size. However, the functional roles of the 607 Stress Induced Peptides

(SIPs) previously identified from 189 Transcriptionally Active Regions (TARs) in Arabidopsis

thaliana remain unclear. To provide a starting point for functional annotation of these plant-

derived peptides, we performed a large-scale prediction of peptide binding sites on protein

surfaces using coarse-grained peptide docking. The docked models were subjected to fur-

ther atomistic refinement and binding energy calculations. A total of 530 peptide-protein

pairs were successfully docked. In cases where a peptide encoded by a TAR is predicted to

bind at a known ligand or cofactor-binding site within the protein, it can be assumed that the

peptide modulates the ligand or cofactor-binding. Moreover, we predict that several peptides

bind at protein-protein interfaces, which could therefore regulate the formation of the respec-

tive complexes. Protein-peptide binding analysis further revealed that peptides employ both

their backbone and side chain atoms when binding to the protein, forming predominantly

hydrophobic interactions and hydrogen bonds. In this study, we have generated novel pre-

dictions on the potential protein-peptide interactions in A. thaliana, which will help in further

experimental validation.

Introduction

Over the years, the functional importance of short plant signaling peptides has been overshad-

owed by other groups of molecules. For instance, the phytohormone auxin was shown to be

involved in bidirectional polar transport across tissues, controlling plant growth-related pro-

cesses [1,2]. Furthermore, microRNAs are considered to be important signaling molecules,

regulating developmental processes in plants by moving from one cell to another over long

distances [3]. It was only within the last decade that the roles of plant peptides in a wide variety
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of cellular functions were established by multiple studies. For instance, plant peptides may par-

ticipate in cell-to-cell communications, directly interact with pathogens, or interfere with sig-

naling cascades. The plant peptidome is broadly comprised of three main types of peptides

viz., derived from non-functional precursors, derived from functional precursors, and not

derived from any precursor protein [4,5]. Most of the plant peptides identified so far are prod-

ucts of non-functional precursors, and a nice example is the CLAVATA3 (CLV3)/EMBRYO

SURROUNDING REGION (CLE) family comprising of post-translationally modified pep-

tides which are involved in the regulation of transcription factor activity and/or other down-

stream events, leading to altered transcription factor expression patterns by participating in

the MAPKs cascade [6]. Some peptides however are not derived from any precursor protein

and may instead be directly encoded by short Open Reading Frames (sORFs) that were earlier

assumed to be non-coding [7–12]. Several recent studies now clearly demonstrate that sORFs

embedded within non-coding RNAs (ncRNAs), intergenic regions and pseudogenes can

indeed be translated into bioactive peptides. So far only a handful of sORF-encoded peptides

have been studied in detail. One such example is the early nodulin gene enod40 that encodes

bioactive oligopeptides involved in root nodule organogenesis [13–15].

In our previous work, we have identified several Transcriptionally Active Regions (TARs)

induced upon the application of biotic (Botrytis cinerea) and abiotic stress (Paraquat) in Arabi-
dopsis thaliana. These TARs could be translated into Stress-Induced Peptides (SIPs), which

can be specifically categorized depending on the applied stress condition into Botrytis cinerea
Induced Peptides (BIPs) and Oxidative Stress Induced Peptides (OSIPs), catalogued in a data-

base ARA-PEPs [16,17]. Although some physiological effects of sORF-encoded peptides have

been discovered, the molecular mechanisms by which they exert their function through inter-

action with other molecules is largely unknown. We postulate that they could work through

interactions with proteins, as protein-peptide interactions have previously been well estab-

lished as important mediators of protein-protein interactions, partaking in signal transduc-

tion, cell-to-cell communication, protein trafficking and other regulatory pathways [18–24].

Peptide-mediated interactions constitute 15–40% of all protein-protein interactions

[21,22]. Most of the studies performed so far in order to understand protein-peptide interac-

tions focused on small peptides that may be short linear recognition motifs originating from

disordered protein regions [18,20]. Investigating those interactions is experimentally challeng-

ing, and this has led to limited progress in the field of protein-peptide interactions validation.

On the other side, the successful modeling of such complexes depends on prior structural

knowledge of the protein that acts as a receptor. A number of protein-peptide docking meth-

ods, such as Rosetta FlexPepDock [25,26], GalaxyPepDock [27–29], MedusaDock [30], Dyna-

Dock [31], CABS-dock [32, 33], pepATTRACT [19], HADDOCK [34,35], and tools to predict

binding sites on proteins, such as PepSite2 [21,36], have been developed. Moreover, curated

data also exists for characterization of protein-peptide interactions, e.g. a non-redundant data-

base of high-resolution peptide-protein complexes called the peptiDB [18]. Although docking

strategies are the preferred methods for predicting protein-peptide interactions, they are asso-

ciated with certain limitations, such as difficulty in docking peptides longer than 4 Amino

Acids (AA), owing to their high degree of conformational flexibility. In our current study, we

opted to combine the peptide-protein docking method pepATTRACT-local with binding site

predictions obtained from the PepSite2 server, that uses training data of known protein-pep-

tide complexes from Protein Data Bank (PDB) [37] to define Spatial Position Specific Scoring

Matrices (S-PSSMs). Furthermore, as biological systems are not static, we also looked into

dynamics of the obtained docked models and calculated the energetics of binding based on

multiple conformations that the protein-peptide system can acquire in solution.
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We hypothesize that a SIP encoded by a TAR may bind on a protein at one of its pockets, or

to a known ligand or cofactor-binding site, and consequently affect the function of the protein

as a whole. Moreover, peptides may bind at the interfaces of multi-chain complexes and mod-

ulate their activity. Protein-peptide interactions involve smaller interfaces whose affinity is

usually weaker and are transient as they can rapidly make and break interactions in response

to sudden cellular perturbations, for instance stress conditions [23,38].

In recent years, there has been a growing interest in developing protein-protein interaction

inhibitors based on peptides or peptide derivatives. Molecules that can mimic the binding or

functional sites of proteins are promising candidates for different types of biological applica-

tions. Synthetic peptides are widely choiced molecules for mimicry of protein sites because

they can be easily synthesized as exact copies of protein fragments, or they may be generated

by introducing diverse chemical modifications to the peptide sequence, and/or by modifying

the peptide backbone [39]. Peptide mimics have the potential to be developed as attractive tar-

gets for agriculture, especially plant disease control, and for therapeutic interventions [40].

As detailed above, when no information about the peptide-binding site on protein receptors

is available, there is need for computational approaches to predict peptide-binding sites on

protein surfaces, as these models can serve as starting points for experimental characterization

of novel protein-peptide interactions. This will be especially beneficial in studying the model

plant A. thaliana, in which peptides have multiple important roles, but have been understudied

till now. Molecular docking studies can be used effectively to explore the binding mode of

putative peptides onto proteins, serving as an excellent approach for de novo design of peptides

targeting various other biosynthetic pathways in major eukaryotes. In the current study, we

investigate the potential roles of sORF-encoded stress induced peptides in targeting the key

regulatory enzymes, as this could further indicate their roles in mediating stress-response

mechanisms.

Materials and methods

Screening of peptide binding pockets on protein surfaces

We generated a peptide fragment library consisting of 23,113 k-mers ranging in size from 4 to

10 amino acids, using sequences of SIPs [16,17] and following a sliding window approach. We

extracted 2,561 structures corresponding to 1,009 A. thaliana proteins from Protein Data

Bank, PDB (www.rcsb.org) [37]. 996 structures were retained after filtering out redundant

ones. We carried out an all-vs-all screening of potential peptide binding sites on A. thaliana
proteins using PepSite2 [21,36]. Screened pairs were adjusted for multiple testing using the

Benjamini and Hochberg procedure [41] and significance was determined using a False Dis-

covery Rate (FDR) cutoff set to 0.25. Multiple testing was performed using the R Bioconductor

package “multtest” [42].

We used the default settings of BLASTP2.2.28+ algorithm [43] with E-value� 10 to screen

out peptides that show sequence similarity with a protein chain, as entire or a part of a SIP

may mimic a specific binding motif on the protein, or resemble a loop from a large structured

protein, a disordered region in protein termini or interfaces between defined domains [18,20].

Building peptide models, docking and structure refinement

We shortlisted 576 protein-peptide pairs from PepSite2 output to build atomistic models and

perform docking studies, using the protein-peptide coarse-grained ab initio docking protocol

pepATTRACT [19]. For each peptide, three idealized peptide conformations (extended, α-he-

lical and polyproline) were built using the Python library PeptideBuilder [44]. The backbone

dihedral angles used to represent the three peptide conformations were α-helical (F = –57˚,
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C = –47˚), extended (F = –139˚, C = –135˚), and polyproline conformations (F = –78˚, C =

149˚) [35].

In the current study, the rigid body docking models were ranked by ATTRACT score, and

the top-ranked 100 structures were subjected to atomistic refinement using the flexible inter-

face refinement method iATTRACT. We used the distance restraint based local docking pro-

tocol of pepATTRACT to restrict the sampling during rigid body sampling stage and flexible

refinement stage towards the PepSite2 predicted interface residues. The placement of peptide

and protein was optimized during iATTRACT refinement. At this stage, the interface region

of the peptide and the protein were treated as fully flexible, while simultaneously optimizing

the center of mass position and orientation of the peptide.

Molecular dynamics

Preparation and parametrization. We used pdb4amber from Amber16 [45] to make the

pdb files of 104 high confidence protein-peptide complexes top models suitable for using this

software package. All disulfide bonds detected by pdb4amber were retained in the system.

Detected protein gaps were treated by addition of N-methyl group (NME) to the carbon of the

backbone amide group of the C-terminal, and acetyl group (ACE) to the backbone nitrogen of

the N-terminal amino acid, using PyMol Molecular Graphics System, Version v1.7.4.4, Schro-

dinger, LLC [46]. Capping prevents the amino acids that are flanking the gap from being rec-

ognized as protein termini, and therefore charged.

Parametrization of the systems was done using teLeap from Amber16. Counter-charged

ions (Na+ or Cl-) were added to the non-neutral systems, and each protein-peptide complex

was surrounded by a rectangular box of explicit TIP3P water spanning 10 Å from the system.

Force field ff14SB was used for parametrization of proteins and peptides, and tip3p for parame-

trization of water. Joung/Cheatham parameters were employed for monovalent ions in the

chosen water type.

Optimization. Systems were optimized in 25,000 steps divided in five cycles, using sander
from Amber16. First 1,000 steps of each cycle were performed by steepest descent method,

while conjugated gradient was used for the remaining steps. In first three cycles, the constraint

was applied to 1. the entire protein, 2. heavy protein:peptide atoms, and 3. backbone atoms,

using force constant 100 kcal mol-1 Å-2. Constraint on backbone atoms was reduced to 50 kcal

mol-1 Å-2 in the fourth cycle, and no constraints were applied in the fifth.

Molecular dynamics simulations. After optimization, each system was equilibrated dur-

ing the initial 500 ps, using pmemd from Amber16 package. In the first 300 ps, the canonical

NVT ensemble was simulated, with constraint applied to atoms in the protein:peptide complex

using the force constant 25 kcal mol-1 Å-2. Temperature was increasing from 0 to 300 K during

the first 250 ps. In the last 200 ps of equilibration, isothermal-isobaric ensemble NpT was sim-

ulated, with temperature held constant at 300 K and pressure at 1.0 bar, with no constraints

applied to the system. Throughout equilibration, the SHAKE algorithm was used to apply con-

straints on bonds containing hydrogen atoms, and time step of 2 fs was used. The cutoff dis-

tance for non-bonded interactions was set to 15 Å, and the neighbor list was updated each 20

steps.

Production phase was done as a 4.5 ns continuation of the 500 ps long equilibration, using

Gromacs 5 software [47–54]. Conversion from Amber to Gromacs file formats was performed

with the help of ParmEd 2.7 tool (https://github.com/ParmEd/ParmEd). Constraint on bonds

that contain hydrogen atoms was applied using LINCS algorithm, the time step was 2 fs, and

the coordinates were written each picosecond. The temperature and pressure were kept at 300

K and 1.0 bar using modified Berendsen thermostat for temperature, and Parrinello-Rahman
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barostat for pressure coupling. Particle mesh Ewald method was used for electrostatic interac-

tions, the cutoff distance for non-bonded interactions was 12 Å, and the neighbor list was

updated each 20 steps. Periodic boundary conditions were applied throughout equilibration

and production phase.

Analysis and binding energy calculation. The obtained trajectories were visualized by

Visual Molecular Dynamics VMD program [55], and tools from Gromacs package were used

to correct for periodic boundary conditions and calculate root mean square deviation (RMSD)

of complexes’ backbones. Matplotlib [56] was used to visualize the results of analyses.

Molecular Mechanics energies with Generalized Born and Surface Area continuum solva-

tion (MM/GBSA) method was used to calculate the Gibbs energy of protein:peptide binding in

the 104 top docking models. The binding energy is calculated as the following average:

DGbind ¼ hGprotein:peptide � Gprotein � Gpeptideiprotein:peptide ð1Þ

with each Gibbs energy term being the following sum:

G ¼ Ebnd þ Eel þ Evdw þ Gpol þ Gnp � TS ð2Þ

where the bonded, electrostatic and van der Waals interaction energies terms are obtained by

molecular mechanics, the polar solvation term by generalized Born, the non-polar solvation

term from linear relation to the solvent accessible surface area, while the entropy term is often

omitted [57], as is in this study.

Amber MMPBSA.py.MPI was used here to calculate ΔGbind for protein:peptide systems by

MM/GBSA method, using a single trajectory of the complex. The topology files of dry com-

plexes, as well as ligand (peptide) and receptor (protein), were prepared with Amber ante-
MMPBSA.py. The Gibbs energy terms in Eq (1) were calculated for 100 conformational snap-

shots from the last 2.5 ns of the production phase for each system, using salt concentration of

0.15 mol dm-3. During the MM/GBSA calculations, per-residue binding energy decomposition

was also performed in order to get insight into contributions of specific protein and peptide

residues to binding.

Amino acids contribution to binding. The output files of the MM/GBSA per-residue

energy decomposition were used to analyze the characteristics of protein:peptide binding. In

each of the 104 systems, the residue with the largest contribution to binding, either in stabiliz-

ing or destabilizing manner, was detected. The threshold was then set to 40% of its binding

energy contribution value, and all residues that contributed more than the threshold in a given

system were taken for the analysis, with taking into account whether amino acid belongs to

protein or peptide. The number of appearances of individual amino acid was then calculated,

as well as average binding contribution of different amino acids, separately for proteins and

peptides, using Python.

Characteristics of SIPs and A. thaliana proteins. We scanned SIPs for hydrophobicity

using the grand average of hydropathy (GRAVY) number, which is a measure of the hydro-

phobicity/hydrophilicity of a protein based on Kyte and Doolittle equation. The hydropathy

values range from -2 to +2 for most proteins, with the positively ranked proteins being more

hydrophobic.

Gene ontology (GO) analysis was performed using the ClueGo Cytoscape plugin [58]. Lists

of 835 unique proteins from the initial screening analysis were mapped to corresponding Uni-

prot IDs using mappings from SIFTS database [59] (www.ebi.ac.uk/pdbe/docs/sifts/index.

html). The list of proteins was used to query REACTOME_Pathways and GO_BiologicalProcess

ontology and the type of evidence set was All_experimental. Pathways with p-values� 0.05

were displayed, the minimum GO tree interval was set as 3 and the maximum level was set as 8,
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the GO term/pathway selection was set as a threshold of 4% of genes per pathway and the kappa

score was set as 0.4.

Analysis of interactions at the protein-peptide interface. We manually inspected the top

10 models for each docked protein-peptide pair predicted by pepATTRACT using molecular

visualization softwares UCSF Chimera [60] and PyMOL Molecular Graphics System. PDBeMo-

tif, a web server for checking the PDB structure for ligands and binding sites [61] and Catalytic

Site Atlas, a database of enzyme active sites and catalytic residues on enzymes [62] was used for

finding ligand/cofactor binding sites and enzyme active sites respectively. We analyzed if a spe-

cific peptide binding site lies at the interface of multi-chain proteins and assumed that residues

on the 2 chains less than 6.0 Å apart were interacting residues. The distance between Cα atoms

located in chains A and B, with coordinates A(x1, y1, z1) and B(x2, y2, z2), was calculated accord-

ing to the Euclidean distance equation DðA;BÞ:
p
fðx1 � x2Þ

2
þ ðy1 � y2Þ

2
þ ðz1 � z2Þ

2
g. All

calculations were performed using the Biopython package from Python.

Protein-peptide bindings were characterized using BINding ANAlyzer (BINANA) [63],

HBPLUS [64] and Protein-Ligand Interaction Profiler (PLIP) [65] tools. BINANA was used to

characterize important protein-ligand interactions such as close contacts (any receptor atom

within 4.0 Å of the ligand atoms), hydrogen bonds (distance cutoff = 4.0 Å and angle cutoff

� 40˚), hydrophobic contacts (ligand carbon atom within 4.0 Å of a receptor carbon atom), salt

bridges and pi-pi interactions.

Results

Short peptides may exert their function by interacting with proteins

In a previous study, we identified 189 TARs in response to plant oxidative stress by the herbicide

Paraquat and the fungus Botrytis cinerea, which could be translated into 607 SIPs [16,17]. A pep-

tide fragment library consisting of 23,113 k-mers, ranging from 4 to 10 AA residues, was gener-

ated and searched for potential binding sites on A. thaliana proteins from the PDB repository,

using PepSite2. 12,540,140 protein-peptide pairs were screened, and multiple testing correction

was performed using Benjamini-Hochberg correction method [41] on all p-values with FDR set

as 0.25. We have used a fairly high FDR of 25% because our study is an initial exploratory step to

identify potential protein-peptide bindings and using a rather relaxed FDR would help us to not

leave out any interesting candidates. We additionally screened for short peptide motif matches

on A. thaliana proteins using BLASTP with default E-value� 10 and found 302 matches with

sequence identity ranging from 20% to 100%. The reasoning for finding peptides that show

sequence similarity with a protein chain is that, an entire or a part of a SIP may mimic a specific

binding motif on the protein, or resemble a loop from a large structured protein, a disordered

region in protein termini or interfaces between defined domains and modulate the protein’s

activity [18,20]. A feasible subset for initial docking analysis was devised by pooling together 576

pairs comprising of the above 302 matches and randomly selecting 274 other pairs significant

below the FDR threshold (Figs 1A and S1A). The list of docked pairs can be accessed through

the url (https://www.biw.kuleuven.be/CSB/ARA-PEPs/SIP_PDB_interactions.php) (S1 Table).

In our study, 46 protein-peptide complexes failed to dock, and the reason could be the large con-

formational changes of the protein caused by binding of a flexible peptide; this indeed remains a

big problem of docking based methods [35]. From among the docked models, we selected 104

top protein-peptide pairs by manually inspecting models with most negative ATTRACT force

field energy followed by calculation of free energy of binding using molecular dynamics simula-

tions (S2 Table). Our results show that there exists a huge repertoire of potential peptide binding

sites on several A. thaliana proteins which remain to be experimentally validated. Large-scale
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predictions of potential protein-peptide pairs can aid in future experimental studies for under-

standing cell-to-cell communication during plant development or stress-tolerance mechanisms.

Specific inhibitors may mimic portions of protein interfaces and can bind to a peptide bind-

ing pocket located at the interface between two monomers. In our study we found that 15 pep-

tides bind at the interface between subunits of protein complexes around 6.0 Å apart,

indicating the ability to modulate complex’s activity (Fig 1A and S3 Table). Among the 15

models, in three of the cases the peptides bind in a similar way to known characterized short

peptides or portion of a full-length protein (S4 Fig). We also observed that 30 peptides bind to

a known ligand/cofactor binding site (Fig 1A and S4 Table). Ligand and protein binding sites

may often overlap within protein families as it has been shown that a peptide may compete

with the ligand for the binding site or non-competitively bind to the pocket along with the

ligand molecule. The possibility that several peptides may simply interact with known ligand/

cofactor binding pockets could also be a result of PepSite2 having bias towards known larger

pockets in a way similar to many other data driven methods which use existing, characterized

proteins as templates and often are not well-suited to predict features that are missing in their

template library [66].

Fig 1. Overview of screening pipeline for protein-peptide pairs and enrichment analysis of proteins. (A) Workflow

showing the screening of 23,113 k-mers for binding sites on 1009 A. thaliana proteins. In total 12,540,140 protein-

peptide pairs were screened, and multiple testing was performed on all p-values with False Discovery Rate (FDR) set as

0.25. A subset of 576 pairs were docked, and 104 pairs were further studied in detail. 30 peptides may bind to a ligand

binding/catalytic site on a protein and 15 peptides may bind at the dimer interface between 2 chains of a protein

complex. The peptide binding pocket is highlighted in yellow. (B) Histogram showing specific GO terms related to the

associated proteins from protein-peptide screening analysis. The bars represent the number of proteins from the

analyzed cluster associated with the term, and the label displayed on the bars is the percentage of proteins compared to

all proteins associated with the term. The overview pie-chart presents functional groups for the proteins where the

name of the group is given by the most significant term in the group. GO enrichment analysis revealed 5 main groups

and each group section in the pie-chart correlates with the number of terms in each group.

https://doi.org/10.1371/journal.pone.0205179.g001
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While we observe that both pepATTRACT-local and pepATTRACT-blind produce similar

results for 56% of the docked pairs, the other 44% of the pairs were not docked at the same site

of the protein using the two methods (S2A Fig). These results show that the use of restraints in

docking protocols can help in concentrating the search around relevant regions of the protein-

peptide interaction space especially when experimental restraints are not available. Other

reports have previously shown that restraint-based dockings yield better results as compared

to blind docking methods [67,68].

In addition, we investigated if protein pockets could bind multiple peptides, or in other

words, whether a peptide prefers to bind to one specific pocket on a protein. To test this, we

generated a randomly shuffled list of peptides while keeping the list of PDB structures intact,

followed by scanning for binding sites using PepSite2. Among the protein structures that did

bind a peptide, in 95.15% of the cases, peptides bound to the same protein pocket while in

4.85% cases peptides bound to a different pocket on the same protein (S2B Fig). It is possible

that the S-PSSMs capture the binding modes of amino acids in such a way that amino acids in a

peptide sequence may prefer to bind to chemically similar binding sites on proteins, e.g. hydro-

phobic amino acids from the peptide tend to bind hydrophobic protein regions [21] of appro-

priate sizes. While some reports suggest that peptides often look for a large enough pocket to

bind followed by latching onto it with the help of a few hotspot residues [18,69], other reports

suggest that several different peptides are able to bind to the same protein domain by exhibiting

special properties such as promiscuity [70]. Furthermore, the seemingly more important role of

peptide backbone compared to side chain atoms (detailed below) in protein binding provides

another explanation for the observed promiscuity, as backbone atoms are the same independent

of the amino acid sequence of the peptide.

We mapped 835 unique A. thaliana protein chains from the initial screening to Uniprot

IDs using annotations from SIFTS database [59] and performed Gene Ontology (GO) enrich-

ment analysis using REACTOME_Pathways and GO_BiologicalProcess ontology. GO analysis

of the A. thaliana proteins with significant scores revealed that they may be categorized into 5

main groups viz. defense response, cellular response to organic cyclic compound, organonitro-

gen compound metabolic process, regulation of stomatal movement and cellular response to

chemical stimulus (Fig 1B).

Characterization of protein-peptide binding interactions

We carried out a general characterization of protein-peptide interactions in the 104 docked

pairs. We extracted top 10 models from the docking results after iATTRACT refinement and

calculated the average number of interactions within each docked pair. Each receptor atom that

comes within 4 Å of any ligand atom is considered as a close contact. We determined the mean

number of close contacts per docked pair to be 167±49 (S1B Fig). All protein-peptide pairs

interacted with each other using hydrogen bonds and hydrophobic interactions. The mean

number of hydrophobic interactions per system is 24±8, and the mean number of hydrogen

bonds per docked pair is 4.5±2, where donors of hydrogen bonds are localized on protein in

51% of the cases (Fig 2E). While hydrogen bonds and hydrophobic interactions are omnipres-

ent, not all pairs formed salt bridges and pi-pi stackings (Fig 2D and 2E). Within the peptides in

our top 104 models, 22.5% of the total amino acid residues are charged (Arg, Lys, His, Asp, Glu)

and 14.4% residues are aromatic (His, Phe, Tyr, Trp). In agreement with the amino acid compo-

sition, we also found salt bridges to be more prevalent than pi-pi stackings in the docked sys-

tems: 52% of protein-peptide pairs contain salt bridges with the mean number per system 1.72

±1, and 7.7% form pi-pi stackings with the mean of 1.63±0.7. An additional 5.8% of pairs have
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both salt bridges and pi-pi stackings, while the remaining 34.6% do not form any salt bridges or

pi-pi stackings (Fig 2D).

In total, 23.8% of peptide side chain and 38.7% of backbone atoms participate in close con-

tacts, with an average number of contacts per interacting atom being 3.6 and 2.8, respectively

(Fig 2E). In average, the ratio of the unique peptide side chain:backbone atoms involved in

close contacts is 2:1 for the top model in 104 docked systems, while the overall side chain:back-

bone ratio of atoms is 3.2:1. If side chain and backbone atoms of the peptide were equally

important in protein binding, we would expect the ratio of atoms involved in close contacts to

also be 3.2:1. Instead, its lower value suggests that peptide backbone atoms might be more

important in protein-peptide interactions than the side chain ones.

We determined the overall hydropathy index for all the 576 peptide fragments and found

that 60.2% of the peptides are hydrophilic, while the remaining 39.8% are hydrophobic in

nature (Fig 2C). A larger fraction of SIPs in our dataset have high hydrophilicity or a lower

GRAVY index score, suggesting that they may mainly interact with globular proteins rather

than with hydrophobic regions that spans membranes. Peptides with fewer ionic/charged

groups are generally less soluble in water and are therefore prone to aggregation and interact-

ing with hydrophobic pockets of larger proteins.

After analysis of the docked models, we took a further look into the dynamics of the top

model from each of the 104 protein-peptide docked pairs and calculated the free energy of

binding based on 100 conformational snapshots from molecular dynamics for each system

Fig 2. Characterization of peptides and protein-peptide binding interactions. (A) Histogram showing ΔGbind values

for 104 top models (B) ΔGbind values as individual data points (C) Hydropathy index for all the 576 peptides predicted

to interact with A. thaliana proteins (D) Total number of charged and aromatic residues in the peptides that interact

with proteins. The plot also shows the total number of salt-bridges and pi-pi stackings formed in the top models. (E)

Different types of interactions formed by the protein-peptide pairs.

https://doi.org/10.1371/journal.pone.0205179.g002
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(Fig 2A and 2B). Per-residue decomposition of protein-peptide binding energies also allowed

identification of amino acid types that frequently (in multiple systems) have significant bind-

ing contribution (S3A Fig). For instance, arginine residue, located in proteins at the peptide

binding interface, stands out as a recurring amino acid with significant stabilizing effect on the

binding (large value of x-axis and negative value of the ΔGbind contribution in S3A Fig). Inter-

estingly, an equivalent prevalent contribution of negatively charged peptide amino acids is

seemingly lacking (seen as a lack of green data points with large x values belonging to Glu and

Asp in S3A Fig). Visual investigation of trajectories obtained by molecular dynamics shows

that arginine charge is instead stabilized by salt bridges with negatively charged carboxyl

groups of peptide C-terminal amino acids in 70% of cases (31 out of 44 prominent protein Arg

residues), making this interaction independent of amino acid type present in the peptide.

Other prominent protein residues that predominantly stabilize interactions with the peptides

are the charged (Glu, Asp) and aromatic ones (Trp, Phe, Tyr).

Local destabilizing effect on binding is shown by different peptide amino acids, containing

side chains of largely different properties (S3A Fig). However, a more detailed view reveals

that this is a consequence of amino acid location within a peptide, rather than its chemical

composition (S3B Fig). In average, non-terminally located amino acids contribute to the bind-

ing in a stabilizing manner, N-termini destabilize protein-peptide interaction, while C-termi-

nal amino acids have different average effect depending on amino acid type, and rarely have

significant contribution (S3B and S3C Fig). Positively charged arginine residue in peptide is an

interesting example: its overall contribution is stabilizing (S3A Fig) but depending on its posi-

tion within the peptide it shows effects that range from stabilizing to destabilizing (S3B Fig).

The same holds true for several other amino acids.

Overall, the largest destabilizing factor in binding across the 104 top protein-peptide mod-

els is the inability of protein to stabilize the N-terminal positively charged amino group of the

peptide. However, the negative ΔGbind values for almost all systems (101 out of 104; Fig 2A and

2B) show that this factor is insufficient to destabilize the overall binding of the peptide to the

predicted part of the protein.

Peptide BIP142_3/OSIP134_3 may bind to CRYD protein

The 10-mer peptide fragment LAEDTFGEIS from BIP142_3/OSIP134_3 can be translated

from BcTAR142/PQTAR134, expressed under stress conditions involving either B. cinerea or

Paraquat. The above TAR is solely expressed under stress conditions and shows no expression

under mock treatments (Fig 3A). The full-length peptide sequence of BIP142_3/OSIP134_3

(41 AA) was split into smaller fragments (<10-mers) and searched for protein partners. Bind-

ings with adjusted p-values� 0.05 were retained (Fig 3B). Additionally, BLASTP screenings

revealed that the stretch of BIP142_3/OSIP134_3 (AA position: 9 to 32) show sequence simi-

larity (46%) to cryptochrome DASH (CRYD) protein (chain D in 2VTB PDB structure), hence

this peptide fragment may potentially act as a peptide mimic or affect the activity of the protein

by binding to one of its pockets (Fig 3B). Members of the cryptochrome DASH subclade are

involved in the DNA repair of cyclobutane pyrimidine dimers in single stranded DNA [71].

Cryptochromes in general are photolyase-like flavoproteins that mediate blue-light regulation

of gene expression and photomorphogenic responses, including abiotic stress responses in

Arabidopsis, as well as in all kingdoms of life [72].

The peptide LAEDTFGEIS bound to A. thaliana CRYD shows one of the strongest bindings

among the 104 top models, with ΔGbind value of -48.02 kcal mol-1. Several residues in this com-

plex have large contribution to this binding (represented as sticks in Fig 3C), with all except N-

terminal leucine of the peptide contributing in a stabilizing manner. Protein and peptide are
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bound via various types of interactions: salt bridges (Arg 436 and Asp 4; Arg 487, Arg 490 and

Ser 10), stacking interactions (Trp 365 and Phe 6) and hydrogen bonds (Trp 365 and Thr 5).

Destabilizing effect of N-terminal peptide residue, found in multiple other systems as well

(S3B Fig), is likely the consequence of the lack of a negatively charged residue at the corre-

sponding position in the protein, which would make favourable interactions with N-terminal

amine group.

Two cofactors can bind to CRYD: flavin adenine dinucleotide (FAD) and 5,10-methenylte-

trahydrofolate (MTHF), out of which the first one is necessary for catalytic activity. According

to UniProt database [73], amino acids Arg 436 and Asp 485, which coincide with LAEDTF-

GEIS binding site, are involved in ATP binding. If the peptide (represented as magenta surface

in Fig 3C) indeed binds CRYD (represented as grey surface in Fig 3C) in a way predicted in

this study, it could block FAD binding or even bind simultaneously with it, therefore having

an effect on the activity of this enzyme, and consequently on the aforementioned type of DNA

repair (Fig 3C).

Fig 3. Overview of short peptide LAEDTFGEIS from stress induced BcTAR142/PQTAR134. (A) BcTAR142/

PQTAR134 shows mRNA expression levels under treated (PQ and BC) and mock conditions (mock_BC and

mock_PQ). (B) Screening of all possible peptide fragments from BIP142_3/OSIP134_3 against all A. thaliana proteins

in PDB. The LAEDTFGEIS-2VTB (Chain D) model indicated with a red line in the Figure. (C) A coarse model of

peptide LAEDTFGEIS bound to CRYD protein (chain D of 2VTB). Restraint based docking was performed, followed

by surrounding of the 3D model with explicit water. The solvated structure was optimized and then used for MD

simulation. The conformational snapshots from the MD were used to calculate ΔGbind value for protein-peptide

binding, and for visual inspection of the mode of binding (details in the text). Finally, superposition of the docked

model (CRYD as grey, and docked LAEDTFGEIS as magenta surface) and the original PDB structure, which has FAD

(green) and MTHF (yellow) co-factors bound, suggests that peptide might have an effect on FAD binding, and

consequently on CRYD’s function.

https://doi.org/10.1371/journal.pone.0205179.g003
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Discussion

Steroids, peptides and other small bioactive compounds mainly regulate cellular communica-

tion in eukaryotes, including plants. Over the last decade, an increasing number of secreted

peptides have been shown to influence a variety of developmental processes in plants, such as

meristem size, root growth, stomatal differentiation, and organ abscission [74]. sORFs that

might encode peptides have been overlooked in gene prediction programs owing to their small

size. Moreover, there exist only a handful of publicly available T-DNA insertion collections of

peptide encoding genes [75,76]. In this study, we predict that a large number of SIPs in A.

thaliana may exert their function through protein-peptide interactions, by binding on protein

surfaces. We found 30 peptides that may bind at known ligand/cofactor binding sites on pro-

teins. The identification of ligand/cofactor binding sites in protein structures can aid in deter-

mination of peptide ligand types and experimental validation of the function of the receptor

[77]. A peptide may compete for the ligand-binding site on the receptor, or it may non-com-

petitively bind to the pocket together with the ligand molecule and play a role in modulating

the receptor. Additionally, we screened 15 peptides that may bind to a pocket at the interface

between two monomers of a multi-chain complex. The design of peptides and peptidomi-

metics that mimic portions of dimeric/multimeric protein interfaces have been shown to be a

useful approach for the discovery of inhibitors that bind at protein-protein interfaces [78].

Currently, there is a lot of interest in drugs that can inhibit dimerization of a functionally obli-

gate homodimeric enzyme. However, design of peptides that may disrupt protein-protein

interactions is far more challenging than designing enzyme active site inhibitors, due to factors

such as the large interfacial areas involved, and flat and featureless topologies that these bind-

ing surfaces may exhibit [79].

The characterization of protein-peptide interactions can be used to evaluate the binding

affinity of the model. One of the major factors determining the binding of a peptide to a pro-

tein is the size of the pocket [80]. In our study, binding analysis of the predicted protein-pep-

tide pairs revealed that different peptides tend to bind in the same pocket of one protein. We

also observed that the peptides mostly interact with proteins with the help of side chains, but

this is due to the reason that we have 3.2 times more of side chain atoms than backbone atoms.

However, the peptide backbone atoms participate in more unique protein-peptide interactions

as compared to the side chains. This is in agreement with another finding where peptides use

more H-bonds in binding to their protein partner involving the peptide backbone. In the Pep-
tiDB dataset comprising of 103 protein-peptide complexes, 19 peptides bind as β-strands,

which use far more H-bonds on average, while 18 peptides were bound as α-helices, which

form less H-bonds with proteins and contain more nonpolar atoms at the interface [18].

The pepATTRACT-local docking method has advantages over other protein-peptide dock-

ing methods. First, pepATTRACT-local docking outperforms blind docking whose perfor-

mance is similar with other local docking methods [19]. Second, this approach completes a

run in about one hour for each pair, which is beneficial for large-scale prediction of protein-

peptide interactions. In our study, 46 protein-peptide pairs failed to dock. The reason may be

due to large conformational changes upon peptide binding onto the receptor, which still

remains a huge problem while trying to accurately predict interactions [35]. Some failed cases

reveal that the peptide is deeply buried into the protein surface. These failed pairs can be

docked using other local docking methods. However, for most of protein-peptide interactions,

only very small conformational changes upon peptide binding have been observed on the pro-

tein surface.

The A. thaliana genome may encode thousands of small proteins that could function as

peptide signals and more than 600 plasma membrane-bound receptor-type proteins that could
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act as receptors for peptide ligands [81]. Several sORF-encoded peptides may target regulatory

enzymes involved in metabolic pathways by downregulating or upregulating the activity of

these key enzymes. Predicting potential protein-peptide pairs and confirmation of physical

interaction between these pairs is crucial to advance our understanding of cell-to-cell commu-

nication during plant development or stress-tolerance mechanisms [2]. Apart from the CLE

family peptides which have been quite comprehensively studied, there may be many more pep-

tides that remain to be identified. In general, our study aims at predicting potential protein-

peptide interactions on protein surfaces which can be experimentally validated by researchers

in the future.
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