34 research outputs found

    Abundance and Distribution of Afrosteles distans an Indicator of Food Availability for the Kihansi Spray Toad (Nectophrynoides asperginis) in the Kihansi Gorge

    Get PDF
    Survivorship of the Kihansi Spray Toad in the wild depends on various factors such as environment, habitat, food availability, diseases and predation. This study assessed the abundance of Afrosteles distans Linnavuori 1959 as an indicator of food availability for the Kihansi Spray Toad. Samples were collected from sprinkled (A, B, C, D, E and F) and non-sprinkled (G and H) plots in the upper spray wetland in the Kihansi gorge during the dry period in 2007, 2008, 2015, 2016 and 2018. There was a significantly higher abundance of A. distans in sprinkled than non-sprinkled plots. ANOVA showed significant differences in the abundance of A. distans among plots in each year. ANOSIM (Global R = 0.756, p = 0.001) showed a significant difference between plots with an increasing trend (E, F and D) and plots with a decreasing trend (A, B and C). Cluster analysis resulted in 62% similarity of plots A, B and C and 68% similarity of plots E, F and D. Favourable conditions for the A. distans were not homogenous among the sprinkled plots and continued to vary over time. Abundance levels of A. distans and occurrence of other invertebrates indicated that food for the KST was sufficiently available in the gorge. Keywords: Afrosteles distans; Abundance; Kihansi Spray Toad; KST; Kihansi gorge

    Study on the Water Quality Parameters in Semi-Intensive Coastal Shrimp Culture System in Mafia Island, Tanzania

    Get PDF
    This study was conducted to understand the effect of coastal shrimp farming on water quality properties in the surrounding area of a semi-intensive culture system in Mafia Island, Tanzania. Monthly water samples were collected from six stations located within culture ponds, inlet creek and outlet/effluent creek, from June, 2008 to May, 2009, and November, 2009 to March, 2010. The samples were used for the analysis of the selected water quality parameters following the standard procedures. The data obtained was analyzed using one way ANOVA and significant differences accepted at p ? 0.05. Post Hoc Turkeys’ test was used to determine the specific stations which were sources of differences. Correlation co-efficient (r) was performed to establish the relation between independent and dependent parameters. Results showed that DO, salinity, NH4-N, NO2-N and PO4-P were significantly (p<0.05) higher in sampling stations inside culture ponds. NO3-N had significantly (p<0.05) higher mean values at the stations along the effluent creek. No significant differences (p>0.05) were recorded between the stations in terms of temperature, EC and chlorophyll-a. High positive correlations (r = 0.646–0.927) between EC and dissolved nutrients is an indication of common origin of these parameters that is, mineralization of organic materials. In general, concentrations of all analysed parameters were within the desirable and acceptable limits for marine ecosystems. To sustain the present conditions it is being recommended to adopt better farm husbandry as well as treating effluent materials before discharging them to the marine water medium. The study would provide essential information on which further studies can be carried out to evaluate the environmental impacts of marine aquaculture and, supports protection and decision making for sustainable development in the coastal areas. Keywords: Semi-intensive shrimp culture, Water quality, inorganic nutrients, environmental impacts, Mafia Island

    Assessment of pond and integrated aquaculture (IAA) systems in six districts of Tanzania

    Get PDF
    Integrated agriculture and aquaculture systems (IAA) are well known for their ability to improve the overall farm productivity and profitability. This is through recycling of on-farm resources, such as nutrient rich fish pond water and agriculture remains that would otherwise be considered as wastes. The present study explores the existing and potential IAA systems in Tanzania. It also examines management strategies and their influence on fish yield and the economic returns between IAA and non-IAA fish farming. The study assesses farmer’s socio-demographic characteristics and their perception towards fish farming. The study was conducted through an on-site survey of 129 fish ponds owned by 89 farmers in six districts in Tanzania, involving 65 and 64 IAA and non-IAA ponds respectively. Results indicate that tilapia-vegetables is the most common type of IAA practiced by fish famers. Despite higher fish feed use and stocking density in non-IAA ponds, IAA ponds had an average fish yield of 2.46 t ha-1, which was significantly (p0.05) higher than the fish yield of 1.54 t ha-1 found for non-IAA ponds. IAA ponds had also 1.6 and 2.9 times higher (p 0.05) revenue and net profit, respectively, than non-IAA ponds. Additionally, the net return from IAA ponds in an integrated system was significantly (p0.05) higher than when practiced as stand-alone activities. IAA famers were more positive towards fish farming compared to non-IAA farmers. Thus, IAA systems should be promoted among small-scale farmers to cover for an increased fish demand and to improve food security

    Integration of Nile tilapia (Oreochromis niloticus) and vegetables (Amaranthus hybridus and Brassica rapa pekinensis) for improved production, water use efficiency and nutrient recycling

    Get PDF
    Sustainable agriculture intensification is an urgent challenge in developing countries including Tanzania. One potential solution is to adopt farming systems that increase farm production by optimizing resource use efficiency, and integrated aquaculture system, which involves farming of fish and crops, is an example of such systems. This study investigated the impact of Integrated agriculture and aquaculture (IAA) farming on water use efficiency, fish and vegetable production and overall system profitability, and how these parameters are affected by fish stocking densities. Oreochromis niloticus (2.5 g average initial weight) were cultured at low stocking density (five fish m−3, LSD), medium stocking density (eight fish m−3, MSD), and high stocking density (12 fish m−3, HSD) for 205 days. Brassica rapa pekinensis and Amaranthus hybridus cultivated adjacent to the fish tanks were irrigated with; (i) fish tank water, without any fertilizer inputs; (ii) fish tank water, partially fertilized; (iii) tap water, fully fertilized (farmers’ practice); and (iv) tap water without any fertilizer inputs. Although the use of tank water from the high fish stocking density resulted in significantly higher vegetable yield, high fish stocking resulted in lower fish growth, profitability and water use efficiency compared to the other fish stocking densities, probably because of low survival rates (28%) at high stocking densities. The integration of fish at a medium stocking density with vegetables resulted in significantly higher net income than when fish and vegetables were grown separately

    Rural aquaculture: Assessment of its contribution to household income and farmers' perception in selected districts, Tanzania

    Get PDF
    Rural fish farming is being promoted as a good source of protein and income diversification to fight poverty and inequality. However, its actual contribution to these rural households and local community at large is little known. Through interviews with 89 farmers' and 6 key informants, we examined the contribution of rural fish farming to local farmers' household income and investigate farmers' perceptions, opportunities, and constraints towards fish farming in six districts of Tanzania. Results indicated that fish farming contributed on average 13% to household incomes and that it explained 5% of the variation of the household income while 84% of the variation was due to non-fish sources. The majority (79%) of the farmers wanted to continue with fish farming, 9% planned to quit, and 12% had not decided whether to continue or not. Conclusively, much higher aquaculture contribution towards rural development could be obtained if appropriate measures are taken

    Investigating the influence of habitat structure and hydraulics on tropical macroinvertebrate communities

    Full text link
    [EN] The influences of habitat structure and hydraulics on tropical macroinvertebrate communities were investigated in two foothill rivers of the Udzungwa Mountains (United Republic of Tanzania) to assist future Environmental Flow Assessments (EFAs). Macroinvertebrate samples, hydraulic variables and habitat structure were collected at the microhabitat scale (n = 90). Macroinvertebrate communities were first delineated (i.e. clustered) through Poisson and negative binomial mixture models for count data in a semi-supervised mode by taking into account the sampled river. Then, genetically optimised Multi-Layer Perceptrons (MLPs) were used to identify the relationship of the most relevant variables with the delineated communities. Between the three delineated communities exclusively one community was shared between both rivers. The first and third communities presented similar values of richness (i.e. number of families) and diversity but the first was characterised by high abundance and was dominated by Baetidae (43.2%) while Hydropsychidae (36.3%) dominated the third community. The second community was dominated by Baetidae (33.4%), but it involved low abundance, richness and diversity samples and encompassed the microhabitats where no-macroinvertebrates were found. The performance of the MLP acknowledged the quality of the delineation and it indicated that the first community shows a clear affinity for microhabitats with aquatic vegetation and woody debris and the third for unshaded, fast flowing and shallow microhabitats on intermediate-sized substrate. Conversely, the second community occurred in deep and shaded microhabitats with low flow velocity and coarse substrate. We demonstrated that habitat structure and hydraulics are able to properly discriminate the macroinvertebrate communities, which, in turn, underlines their importance as drivers of community composition and abundance. Aquatic vegetation, woody debris, velocity and substrate index, followed by depth and shade, emerged as the most discriminant variables to understand macroinvertebrate communities in these tropical running waters. These results should enhance the implementation of ongoing and future EFA studies. (C) 2018 European Regional Centre for Ecohydrology of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.This study was financed by the United States Agency for International Development (USAID) as part of the Technical Assistance to Support the Development of Irrigation and Rural Roads Infrastructure Project (IRRIP2), implemented by CDM International Inc. J. Sanchez-Hernandez was supported by a postdoctoral grant from the Galician Plan for Research, Innovation, and Growth (Plan I2C, Xunta de Galicia).Muñoz Mas, R.; Sánchez-Hernández, J.; Mcclain, M.; Tamatamah, R.; Mukama, SC.; Martinez-Capel, F. (2019). Investigating the influence of habitat structure and hydraulics on tropical macroinvertebrate communities. Ecohydrology & Hydrobiology. 19(3):339-350. https://doi.org/10.1016/j.ecohyd.2018.07.005S33935019

    Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa)

    Full text link
    [EN] Environmental flow assessment (EFA) involving microhabitat preference models is a common approach to set ecologically friendly flow regimes in territories with ongoing or planned projects to develop river basins, such as many rivers of Eastern Africa. However, habitat requirements of many African fish species are poorly studied, which may impair EFAs. This study investigated habitat preferences of fish assemblages, based on species presence-absence data from 300 microhabitats collected in two tributaries of the Kilombero River (Tanzania), aiming to disentangle differences in habitat preferences of African species at two levels: assemblage (i.e. between tributaries) and species (i.e. species-specific habitat preferences). Overall, flow velocity, which implies coarser substrates and shallower microhabitats, emerged as the most important driver responsible of the changes in stream-dwelling assemblages at the microhabitat scale. At the assemblage level, we identified two important groups of species according to habitat preferences: (a) cover-orientated and limnophilic species, including Barbus spp., Mormyridae and Chiloglanis deckenii, and (b) rheophilic species, including Labeo cylindricus, Amphilius uranoscopus and Parakneria spekii. Rheophilic species preferred boulders, fast flow velocity and deeper microhabitats. At the species level, we identified species-specific habitat preferences. For instance, Barbus spp. preferred low flow velocity shallow depth and fine-to-medium substratum, whereas L. cylindricus and P. spekii mainly selected shallow microhabitats with coarse substrata. Knowledge of habitat preferences of these assemblages and species should enhance the implementation of ongoing and future EFA studies of the region.We thank C. Alexander and an anonymous referee for constructive comments on the submitted manuscript. This study was financed by the United States Agency for International Development (USAID) as part of the Technical Assistance to Support the Development of Irrigation and Rural Roads Infrastructure Project (IRRIP2), implemented by CDM International Inc. We are particularly grateful to the local people who helped us during the data collection. We also gratefully acknowledge individuals from organisations that collaborated in this research and especially the scientific committee that shared their knowledge of the Kilombero River basin. These individuals include the following: J.J. Kashaigili (SUA), K.N. Njau (NM. AIST), P.M. Ndomba (UDSM), F. Mombo (SUA), S. Graas (UNESCO- IHE), C.M. Mengo (RUFIJI BASIN), J.H. O'keeffe (Rhodes Univ.), S.M. Andrew (SUA), P. Paron (UNESCO-IHE), W. Kasanga (CDM Smith), and R. Tharme (RIVER FUTURES). R. Muñoz-Mas benefitted from a postdoctoral Juan de la Cierva fellowship from the Spanish Ministry of Science, Innovation and Universities (ref. FJCI-2016-30829) and J. Sánchez-Hernández was supported by a postdoctoral grant from the Galician Plan for Research, Innovation and Growth (Plan I2C, Xunta de Galicia). Additional funding was provided by the Ministry of Science, Innovation and Universities (projects CGL2016-80820-R and PCIN-2016-168) and the Government of Catalonia (ref. 2017 SGR 548).Muñoz-Mas, R.; Sánchez-Hernández, J.; Martinez-Capel, F.; Tamatamah, R.; Mohamedi, S.; Massinde, R.; Mcclain, ME. (2019). Microhabitat preferences of fish assemblages in the Udzungwa Mountains (Eastern Africa). Ecology Of Freshwater Fish. 28(3):473-484. https://doi.org/10.1111/eff.12469S473484283Akbaripasand, A., & Closs, G. P. (2017). Effects of food supply and stream physical characteristics on habitat use of a stream-dwelling fish. Ecology of Freshwater Fish, 27(1), 270-279. doi:10.1111/eff.12345Alexander, C., Poulsen, F., Robinson, D. C. E., Ma, B. O., … Luster, R. A. (2018). Improving Multi-Objective Ecological Flow Management with Flexible Priorities and Turn-Taking: A Case Study from the Sacramento River and Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science, 16(1). doi:10.15447/sfews.2018v16iss1/art2ALLOUCHE, S. (2002). NATURE AND FUNCTIONS OF COVER FOR RIVERINE FISH. Bulletin Français de la Pêche et de la Pisciculture, (365-366), 297-324. doi:10.1051/kmae:2002037Ardia, D., Boudt, K., Carl, P., Mullen, K., M., & Peterson, B., G. (2011). Differential Evolution with DEoptim. The R Journal, 3(1), 27. doi:10.32614/rj-2011-005Arthington, A. H., Bunn, S. E., Poff, N. L., & Naiman, R. J. (2006). THE CHALLENGE OF PROVIDING ENVIRONMENTAL FLOW RULES TO SUSTAIN RIVER ECOSYSTEMS. Ecological Applications, 16(4), 1311-1318. doi:10.1890/1051-0761(2006)016[1311:tcopef]2.0.co;2Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1-2), 1-19. doi:10.1016/j.ecolmodel.2006.07.005Bain, M. B., Finn, J. T., & Booke, H. E. (1985). A Quantitative Method for Sampling Riverine Microhabitats by Electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493. doi:10.1577/1548-8659(1985)52.0.co;2Baselga, A., & Araújo, M. B. (2009). Individualistic vs community modelling of species distributions under climate change. Ecography, 32(1), 55-65. doi:10.1111/j.1600-0587.2009.05856.xCAMP, E. V., GWINN, D. C., PINE III, W. E., & FRAZER, T. K. (2011). Changes in submersed aquatic vegetation affect predation risk of a common prey fish Lucania parva (Cyprinodontiformes: Fundulidae) in a spring-fed coastal river. Fisheries Management and Ecology, 19(3), 245-251. doi:10.1111/j.1365-2400.2011.00827.xCheng, B., & Li, H. (2018). Agricultural economic losses caused by protection of the ecological basic flow of rivers. Journal of Hydrology, 564, 68-75. doi:10.1016/j.jhydrol.2018.06.065Cotula, L. (2012). The international political economy of the global land rush: A critical appraisal of trends, scale, geography and drivers. The Journal of Peasant Studies, 39(3-4), 649-680. doi:10.1080/03066150.2012.674940Dudgeon, D. (2000). The Ecology of Tropical Asian Rivers and Streams in Relation to Biodiversity Conservation. Annual Review of Ecology and Systematics, 31(1), 239-263. doi:10.1146/annurev.ecolsys.31.1.239Eccles D. H.(1992).Field guide to the freshwater fishes of Tanzania. FAO species identification sheets for fishery purposes.Rome Italy:FAO: Food & Agriculture Organization of the United Nations.Elisa, M., Gara, J. I., & Wolanski, E. (2010). A review of the water crisis in Tanzania’s protected areas, with emphasis on the Katuma River—Lake Rukwa ecosystem. Ecohydrology & Hydrobiology, 10(2-4), 153-165. doi:10.2478/v10104-011-0001-zFriedman, J. H. (2001). machine. The Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environmental Modelling & Software, 47, 1-6. doi:10.1016/j.envsoft.2013.04.005Fukuda, S., Mouton, A. M., & De Baets, B. (2011). Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system. Environmental Monitoring and Assessment, 184(10), 6159-6171. doi:10.1007/s10661-011-2410-2Garbe, J., Beevers, L., & Pender, G. (2016). The interaction of low flow conditions and spawning brown trout ( Salmo trutta ) habitat availability. Ecological Engineering, 88, 53-63. doi:10.1016/j.ecoleng.2015.12.011Gibson, R. J. (1993). The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biology and Fisheries, 3(1), 39-73. doi:10.1007/bf00043297Ibanez, C., Oberdorff, T., Teugels, G., Mamononekene, V., Lavoué, S., Fermon, Y., … Toham, A. K. (2007). Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecology of Freshwater Fish, 16(3), 315-334. doi:10.1111/j.1600-0633.2006.00222.xJOHNSON, J. H., & DOUGLASS, K. A. (2009). Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter. Fisheries Management and Ecology, 16(5), 352-359. doi:10.1111/j.1365-2400.2009.00680.xKadye, W. T., & Chakona, A. (2012). Spatial and temporal variation of fish assemblage in two intermittent streams in north-western Zimbabwe. African Journal of Ecology, 50(4), 428-438. doi:10.1111/j.1365-2028.2012.01338.xKadye, W. T., & Moyo, N. A. G. (2008). Stream fish assemblage and habitat structure in a tropical African river basin (Nyagui River, Zimbabwe). African Journal of Ecology, 46(3), 333-340. doi:10.1111/j.1365-2028.2007.00843.xKouamé, K. A., Yao, S. S., Gooré Bi, G., Kouamélan, E. P., N’Douba, V., & Kouassi, N. J. (2007). Influential environmental gradients and patterns of fish assemblages in a West African basin. Hydrobiologia, 603(1), 159-169. doi:10.1007/s10750-007-9256-1Logez, M., Bady, P., & Pont, D. (2011). Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of Freshwater Fish, 21(2), 266-282. doi:10.1111/j.1600-0633.2011.00545.xMaguire, K. C., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., Williams, J. W., Ferrier, S., & Lorenz, D. J. (2016). Controlled comparison of species- and community-level models across novel climates and communities. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 20152817. doi:10.1098/rspb.2015.2817McClain, M. E., Kashaigili, J. J., & Ndomba, P. (2013). Environmental flow assessment as a tool for achieving environmental objectives of African water policy, with examples from East Africa. International Journal of Water Resources Development, 29(4), 650-665. doi:10.1080/07900627.2013.781913McClain, M. E., Subalusky, A. L., Anderson, E. P., Dessu, S. B., Melesse, A. M., Ndomba, P. M., … Mligo, C. (2014). Comparing flow regime, channel hydraulics, and biological communities to infer flow–ecology relationships in the Mara River of Kenya and Tanzania. Hydrological Sciences Journal, 59(3-4), 801-819. doi:10.1080/02626667.2013.853121Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017Mouton, A. M., Schneider, M., Peter, A., Holzer, G., Müller, R., Goethals, P. L. M., & De Pauw, N. (2008). Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecological Modelling, 215(1-3), 122-132. doi:10.1016/j.ecolmodel.2008.02.028Mullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). DEoptim: AnRPackage for Global Optimization by Differential Evolution. Journal of Statistical Software, 40(6). doi:10.18637/jss.v040.i06Muñoz-Mas, R., Marcos-Garcia, P., Lopez-Nicolas, A., Martínez-García, F. J., Pulido-Velazquez, M., & Martínez-Capel, F. (2018). Combining literature-based and data-driven fuzzy models to predict brown trout (Salmo trutta L.) spawning habitat degradation induced by climate change. Ecological Modelling, 386, 98-114. doi:10.1016/j.ecolmodel.2018.08.012Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J. D., & Mouton, A. M. (2015). Can multilayer perceptron ensembles model the ecological niche of freshwater fish species? Ecological Modelling, 309-310, 72-81. doi:10.1016/j.ecolmodel.2015.04.025Muñoz-Mas, R., Martínez-Capel, F., Alcaraz-Hernández, J. D., & Mouton, A. M. (2017). On species distribution modelling, spatial scales and environmental flow assessment with Multi–Layer Perceptron Ensembles: A case study on the redfin barbel (Barbus haasi; Mertens, 1925). Limnologica, 62, 161-172. doi:10.1016/j.limno.2016.09.004Muñoz-Mas, R., Martínez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074Muñoz-Mas, R., Papadaki, C., Martínez-Capel, F., Zogaris, S., Ntoanidis, L., & Dimitriou, E. (2016). Generalized additive and fuzzy models in environmental flow assessment: A comparison employing the West Balkan trout (Salmo farioides; Karaman, 1938). Ecological Engineering, 91, 365-377. doi:10.1016/j.ecoleng.2016.03.009Ngugi, C. C., Manyala, J. O., Njiru, M., & Mlewa, C. M. (2009). Some aspects of the biology of the stargazer mountain catfish,Amphilius uranoscopus(pfeffer); (Siluriformes: Amphiliidae) indigenous to Kenya streams. African Journal of Ecology, 47(4), 606-613. doi:10.1111/j.1365-2028.2009.01032.xNovák, V., & Lehmke, S. (2006). Logical structure of fuzzy IF-THEN rules. Fuzzy Sets and Systems, 157(15), 2003-2029. doi:10.1016/j.fss.2006.02.011Pease, A. A., Taylor, J. M., Winemiller, K. O., & King, R. S. (2015). Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia, 753(1), 265-283. doi:10.1007/s10750-015-2235-zPetts, G. E. (2009). Instream Flow Science For Sustainable River Management. JAWRA Journal of the American Water Resources Association, 45(5), 1071-1086. doi:10.1111/j.1752-1688.2009.00360.xPOFF, N. L., & ZIMMERMAN, J. K. H. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194-205. doi:10.1111/j.1365-2427.2009.02272.xPoff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099POFF, N. L., RICHTER, B. D., ARTHINGTON, A. H., BUNN, S. E., NAIMAN, R. J., KENDY, E., … WARNER, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170. doi:10.1111/j.1365-2427.2009.02204.xReiser, D. W., & Hilgert, P. J. (2018). A Practitioner’s Perspective on the Continuing Technical Merits of PHABSIM. Fisheries, 43(6), 278-283. doi:10.1002/fsh.10082ROBERTS, T. R. (1975). Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society, 57(4), 249-319. doi:10.1111/j.1096-3642.1975.tb01893.xSánchez-Hernández, J., Gabler, H.-M., & Amundsen, P.-A. (2017). Prey diversity as a driver of resource partitioning between river-dwelling fish species. Ecology and Evolution, 7(7), 2058-2068. doi:10.1002/ece3.2793Scheidegger, K. J., & Bain, M. B. (1995). Larval Fish Distribution and Microhabitat Use in Free-Flowing and Regulated Rivers. Copeia, 1995(1), 125. doi:10.2307/1446807SCHMIDT, R. C., BART, H. L. J., & NYINGI, W. D. (2015). Two new species of African suckermouth catfishes, genus Chiloglanis (Siluriformes: Mochokidae), from Kenya with remarks on other taxa from the area. Zootaxa, 4044(1), 45. doi:10.11646/zootaxa.4044.1.2Schoelynck, J., Creëlle, S., Buis, K., De Mulder, T., Emsens, W.-J., Hein, T., … Folkard, A. (2018). What is a macrophyte patch? Patch identification in aquatic ecosystems and guidelines for consistent delineation. Ecohydrology & Hydrobiology, 18(1), 1-9. doi:10.1016/j.ecohyd.2017.10.005Skelton P. H.(2001).A complete guide to the freshwater fishes of southern Africa. Struik.Somodi, I., Lepesi, N., & Botta-Dukát, Z. (2017). Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecology and Evolution, 7(3), 863-872. doi:10.1002/ece3.2654Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116-132. doi:10.1109/tsmc.1985.6313399Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5-6), 397-441. doi:10.1002/rra.736Theodoropoulos, C., Skoulikidis, N., Stamou, A., & Dimitriou, E. (2018). Spatiotemporal Variation in Benthic-Invertebrates-Based Physical Habitat Modelling: Can We Use Generic Instead of Local and Season-Specific Habitat Suitability Criteria? Water, 10(11), 1508. doi:10.3390/w10111508Vadas, R. L., Vadas, R. L., & Orth, D. J. (2000). Environmental Biology of Fishes, 59(3), 253-269. doi:10.1023/a:1007613701843Van Oosterhout, M. P., van der Velde, G., & Gaigher, I. G. (2008). High altitude mountain streams as a possible refuge habitat for the catfish Amphilius uranoscopus. Environmental Biology of Fishes, 84(1), 109-120. doi:10.1007/s10641-008-9394-yVezza, P., Parasiewicz, P., Rosso, M., & Comoglio, C. (2011). DEFINING MINIMUM ENVIRONMENTAL FLOWS AT REGIONAL SCALE: APPLICATION OF MESOSCALE HABITAT MODELS AND CATCHMENTS CLASSIFICATION. River Research and Applications, 28(6), 717-730. doi:10.1002/rra.1571Vilizzi, L., Stakenas, S., & Copp, G. H. (2012). Use of constrained additive and quadratic ordination in fish habitat studies: an application to introduced pumpkinseed (Lepomis gibbosus) and native brown trout (Salmo trutta) in an English stream. Fundamental and Applied Limnology, 180(1), 69-75. doi:10.1127/1863-9135/2012/0277Webb, J. A., de Little, S. C., Miller, K. A., & Stewardson, M. J. (2018). Quantifying and predicting the benefits of environmental flows: Combining large-scale monitoring data and expert knowledge within hierarchical Bayesian models. Freshwater Biology, 63(8), 831-843. doi:10.1111/fwb.13069Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. doi:10.1111/j.1472-4642.2008.00482.xWorthington E. B.(1929).A Report on the Fishing Survey of Lakes Albert and Kioga: March to July 1928. Government of Uganda Protectorate by the Crown Agents for the Colonies.Yee, T. W. (2006). CONSTRAINED ADDITIVE ORDINATION. Ecology, 87(1), 203-213. doi:10.1890/05-0283Yee, T. W. (2010). TheVGAMPackage for Categorical Data Analysis. Journal of Statistical Software, 32(10). doi:10.18637/jss.v032.i10Yen, J., & Liang Wang. (1998). Application of statistical information criteria for optimal fuzzy model construction. IEEE Transactions on Fuzzy Systems, 6(3), 362-372. doi:10.1109/91.705503Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhou, S.-M., & Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems, 159(23), 3091-3131. doi:10.1016/j.fss.2008.05.01

    Whole genome resequencing data enables a targeted SNP panel for conservation and aquaculture of Oreochromis cichlid fishes

    Get PDF
    Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industries. Broodstocks for aquaculture are often collected from wild populations, which in Africa may be from locations containing multiple Oreochromis species. However, many species are difficult to distinguish morphologically, hampering efforts to maintain good quality farmed strains. Additionally, non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species, which themselves are important for capture fisheries. The morphological identification of these hybrids is particularly unreliable. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity in hatcheries and helping to conserve unique endemic biodiversity

    Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction

    Get PDF
    From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960–1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture

    Growth perfomance of Tilapia sparmanni fed on formulated chicken feeds

    No full text
    Growth performance of 120 fi sh fi ngerlings of Tilapia sparmanni stocked in three rectangular tanks was evaluated after feeding on three different formulated chicken feeds for eight weeks. Fish wet weights and lengths were measured after every two weeks, they indicated considerable increase.</p
    corecore