42 research outputs found

    Precision cosmology with redshift-space bispectrum: a perturbation theory based model at one-loop order

    Full text link
    The large-scale matter distribution in the late-time Universe exhibits gravity-induced non-Gaussianity, and the bispectrum, three-point cumulant is expected to contain significant cosmological information. In particular, the measurement of the bispectrum helps to tighten the constraints on dark energy and modified gravity through the redshift-space distortions (RSD). In this paper, extending the work by Taruya, Nishimichi & Saito (2010, Phys.Rev.D 82, 063522), we present a perturbation theory (PT) based model of redshift-space matter bispectrum that can keep the non-perturbative damping effect under control. Characterizing this non-perturbative damping by a univariate function with single free parameter, the PT model of the redshift-space bispectrum is tested against a large set of cosmological NN-body simulations, finding that the predicted monopole and quadrupole moments are in a good agreement with simulations at the scales of baryon acoustic oscillations (well beyond the range of agreement of standard PT). The validity of the univariate ansatz of the damping effect is also examined, and with the PT calculation at next-to-leading order, the fitted values of the free parameter is shown to consistently match those obtained from the PT model of power spectrum by Taruya, Nishimichi & Saito (2010).Comment: 21 pages, 13 figure

    Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Full text link
    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ\LambdaCDM model predictions. Halo catalogs from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogs from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the Λ\LambdaCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.Comment: Submitted to MNRAS, 15 pages, 12 figures, 3 table

    Imprints of Dark Energy on Cosmic Structure Formation: III. Sparsity of Dark Matter Halo Profiles

    Full text link
    We study the imprint of Dark Energy on the density profile of Dark Matter halos using a set of high-resolution large volume cosmological N-body simulations from the Dark Energy Universe Simulation Series (DEUSS). We first focus on the analysis of the goodness-of-fit of the Navarro-Frenk-White (NFW) profile which we find to vary with halo mass and redshift. We also find that the fraction of halos ill-fitted by NFW varies with cosmology, thus indicating that the mass assembly of halos with perturbed density profiles carries a characteristic signature of Dark Energy. To access this information independently of any parametric profile, we introduce a new observable quantity: the halo sparsity sΔs_\Delta. This is defined as the mass ratio M200/MΔM_{200}/M_\Delta, i.e. the ratio of mass inside a sphere of radius r200r_{200} to that contained within a radius rΔr_\Delta, enclosing 200 and Δ\Delta times the mean matter density respectively. We find the average sparsity to be nearly independent of the total halo mass, while its value can be inferred to better than a few percent from the ratio of the integrated halo mass functions at overdensities Δ\Delta and 200 respectively. This provides a consistency relation that can validate observational measurements of the halo sparsity. Most importantly, the sparsity significantly varies with the underlying Dark Energy model, thus providing an alternative cosmological probe.Comment: 12 pages, 16 figures. accepted by MNRA

    L'histoire cosmique des baryons dans un univers hierarchique

    Get PDF
    In the framework of the hierarchical model of galaxy formation, small primordial density fluctuations observed on the cosmological microwave background are amplified by gravitational instability leading to the formation of larger and larger halos. The gas collapses and cools in these dark matter potential wells and forms cold centrifugally supported gas discs. These discs are converted into stellar discs that is to say galaxies. The problem in this scenario is the so-called ``overcooling problem'': the resulting amount of stars is greater than the observed one by a factor of four.I have therefore studied the evolution of baryons (hydrogen and helium gas) in the Universe using high resolution hydrodynamical simulations. Based on these results, I have developed a simple analytical model for computing the baryons mass fraction in each of the following phases: stars, cold gas in galactic discs, hot gas in clusters and diffuse gas in the intergalactic medium. The comparison of model results to observations shows us that cosmology controls the cosmic history of star formation. The important cosmological role of galactic winds is also shed to light. They eject the cold gas from discs to hot halos, overcoming the overcooling problem. Finally, I have studied the implication of baryon physics onto the diffuse gamma-ray background from light dark matter particles.Durant cette these, j'ai etudie la formation des galaxies grace a des simulations cosmologiques et a un nouveau modele analytique. Dans le cadre du modele standard de formation hierachique des grandes structures, les petites fluctuations primordiales de densite observees sur le fond diffus cosmologique sont amplifiees par la gravite pour donner des halos de matiere noire de plus en plus gros. C'est au sein de ces halos que le gaz s'effondre et se refroidit pour former des disques de gaz froid a support centrifuge. Ces disques sont ensuite convertis en disques stellaires : les galaxies. Le probleme dans ce scenario est celui du sur-refroidissement : une trop grande part du gaz finit sous forme d'etoiles comparativement aux observations. J'ai donc realise une etude de l'evolution des baryons (un gaz d'hydrogene et d'helium) dans l'Univers grace a des simulations numeriques hydrodynamiques haute-resolution. Cependant, ces simulations sont affectees par des effets de resolution finie. J'ai ainsi developpe un modele analytique simple qui possede l'avantage de ne pas etre affecte par de tels effets. Celui-ci predit la quantite de baryons dans chacune des 4 phases suivantes : etoiles, gaz froid dans les disques galactiques, gaz chaud dans les amas et gaz diffus dans le milieu intergalactique. La comparaison des resultats aux observations a montre que la cosmologie controle le taux de formation d'etoiles dans l'Univers. Ce modele a aussi mis en lumiere le role essentiel des vents galactiques qui, ejectant le gaz froid des disques jusque dans les halos de gaz chaud, permettent d'eviter le probleme du sur-refroidissement. Enfin, en une ouverture vers l'astroparticule, j'ai etudie les implications de la physique du gaz sur le fond diffus gamma produit dans l'hypothese de matiere noire legere

    The e-MANTIS emulator: fast predictions of the non-linear matter power spectrum in f(R)CDM cosmology

    Get PDF
    In order to probe modifications of gravity at cosmological scales, one needs accurate theoretical predictions. N-body simulationsare required to explore the non-linear regime of structure formation but are very time consuming. In this work, we release a newpublic emulator, dubbed E-MANTIS, that performs an accurate and fast interpolation between the predictions of f(R) modifiedgravity cosmological simulations, run with ECOSMOG. We sample a wide 3D parameter space given by the current backgroundscalar field value 10−7 < fR0 < 10−4, matter density 0.24 < m < 0.39, and primordial power spectrum normalization 0.6 < σ8 < 1.0, with 110 points sampled from a Latin hypercube. For each model we perform pairs of f(R)CDM and CDM simulations covering an effective volume of 560 h−1 Mpc3 with a mass resolution of ∼2 × 1010h−1M. We build an emulator for the matter power spectrum boost B(k) = Pf(R)(k)/PCDM(k) using a Gaussian process regression method. The boost is mostly independent of h, ns, and b, which reduces the dimensionality of the relevant cosmological parameter space. Additionally, it is more robust against statistical and systematic errors than the raw power spectrum, thus strongly reducing our computational needs. According to our dedicated study of numerical systematics, the resulting emulator has an estimated maximum error of 3 per cent across the whole cosmological parameter space, for scales 0.03 h Mpc−1 <k< 7 h Mpc−1, and redshifts 0 <z< 2, while in most cases the accuracy is better than 1 per cent. Such an emulator could be used to constrain f(R) gravity with weak lensing analyses

    pFoF: a highly scalable halo-finder for large cosmological data sets

    Get PDF
    We present a parallel implementation of the friends-of-friends algorithm and an innovative technique for reducing complex-shaped data to a user-friendly format. This code, named pFoF, contains an optimized post-processing workflow that reduces the input data coming from gravitational codes, arranges them in a user-friendly format and detects groups of particles using percolation and merging methods. The pFoF code also allows for detecting structures in sub- or non-cubic volumes of the comoving box. In addition, the code offers the possibility of performing new halo-findings with a lower percolation factor, useful for more complex analysis. In this paper, we give standard test results and show performance diagnostics to stress the robustness of pFoF. This code has been extensively tested up to 32768 MPI processes and has proved to be highly scalable with an efficiency of more than 75%. It has been used for analysing the Dark Energy Universe Simulation: Full Universe Runs (DEUS-FUR) project, the first cosmological simulations of the entire observable Universe, modelled with more than half a trillion dark matter particles

    Convection and AGN Feedback in Clusters of Galaxies

    Full text link
    A number of studies have shown that the convective stability criterion for the intracluster medium (ICM) is very different from the Schwarzchild criterion due to the effects of anisotropic thermal conduction and cosmic rays. Building on these studies, we develop a model of the ICM in which a central active galactic nucleus (AGN) accretes hot intracluster plasma at the Bondi rate and produces cosmic rays that cause the ICM to become convectively unstable. The resulting convection heats the intracluster plasma and regulates its temperature and density profiles. By adjusting a single parameter in the model (the size of the cosmic-ray acceleration region), we are able to achieve a good match to the observed density and temperature profiles in a sample of eight clusters. Our results suggest that convection is an important process in cluster cores. An interesting feature of our solutions is that the cooling rate is more sharply peaked about the cluster center than is the convective heating rate. As a result, in several of the clusters in our sample, a compact cooling flow arises in the central region with a size R that is typically a few kpc. The cooling flow matches onto a Bondi flow at smaller radii. The mass accretion rate in the Bondi flow is equal to, and controlled by, the rate at which mass flows in through the cooling flow. Our solutions suggest that the AGN regulates the mass accretion rate in these clusters by controlling R: if the AGN power rises above the equilibrium level, R decreases, the mass accretion rate drops, and the AGN power drops back down to the equilibrium level.Comment: 41 pages, 7 figures, accepted for publication in ApJ. Changes in this version: extended discussion of Bondi accretion in clusters, better mass model, new numerical solution
    corecore