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ABSTRACT
In order to probe modifications of gravity at cosmological scales, one needs accurate theoretical predictions. N-body simulations
are required to explore the non-linear regime of structure formation but are very time consuming. In this work, we release a new
public emulator, dubbed E-MANTIS, that performs an accurate and fast interpolation between the predictions of f(R) modified
gravity cosmological simulations, run with ECOSMOG. We sample a wide 3D parameter space given by the current background
scalar field value 10−7 <

∣
∣fR0

∣
∣ < 10−4, matter density 0.24 < �m < 0.39, and primordial power spectrum normalization 0.6

< σ 8 < 1.0, with 110 points sampled from a Latin hypercube. For each model we perform pairs of f(R)CDM and �CDM
simulations covering an effective volume of

(
560 h−1 Mpc

)3
with a mass resolution of ∼2 × 1010h−1M�. We build an emulator

for the matter power spectrum boost B(k) = Pf(R)(k)/P�CDM(k) using a Gaussian process regression method. The boost is mostly
independent of h, ns, and �b, which reduces the dimensionality of the relevant cosmological parameter space. Additionally, it
is more robust against statistical and systematic errors than the raw power spectrum, thus strongly reducing our computational
needs. According to our dedicated study of numerical systematics, the resulting emulator has an estimated maximum error of
3 per cent across the whole cosmological parameter space, for scales 0.03 h Mpc−1 < k < 7 h Mpc−1, and redshifts 0 < z < 2,
while in most cases the accuracy is better than 1 per cent. Such an emulator could be used to constrain f(R) gravity with weak
lensing analyses.

Key words: gravitation – methods: numerical – dark energy – dark matter – large-scale structure of Universe – cosmology:
theory.
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IN T RO D U C T I O N

he nature of the late-time accelerated expansion of the Universe
emains one of the main unsolved puzzles of modern cosmology.
he unknown component responsible for such an acceleration of

he expansion rate is commonly referred to as dark energy (DE).
n the standard cosmological model, �CDM, DE is modelled by

cosmological constant term � in the Einstein field equations.
ther alternative scenarios are also usually considered, such as the
uintessence models, where DE is made of a dynamical scalar field
see for example Amendola & Tsujikawa 2010, for a review of
ifferent DE models). Another possibility is that DE comes from a
odification of general relativity (GR) at cosmological scales, such

s in several modified gravity (MG) theories (see Clifton et al. 2012,
or an extensive review of MG theories in a cosmological context).

Cosmic structure formation is the result of the interplay between
ravitational collapse and the expansion of the Universe. Therefore,
he large scale structure (LSS) of the Universe offers a unique window
o probe simultaneously the nature of DE and the laws of gravity at
osmological scales. This is precisely one of the main objectives
f current and future next-generation photometric and spectroscopic
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alaxy surveys, such as DESI (DESI Collaboration 2016), LSST
Ivezić et al. 2019), and Euclid (Amendola et al. 2018).

Accurate theoretical predictions will be required to fully exploit
he potential of those experiments. One of the basic theoretical tools
o characterize the growth of cosmic structures is the matter power
pectrum. Even if not directly observable, it serves as a building block
or other observables. However, getting accurate predictions for the
ower spectrum in the non-linear regime of structure formation
equires the use of computationally expensive N-body simulations.
onstraining theoretical models with observations requires searching
large parameter space formed by cosmological and DE/MG

arameters. Therefore, predictions from N-body simulations cannot
irectly be used in an observational analysis, which would require to
un simulations for hundreds of thousands of cosmological models.

In order to overcome this limitation, the concept of cosmic emu-
ators was introduced in the pioneering work of Habib et al. (2007).
n emulator is calibrated on a reduced number of simulations.

t is then able to produce accurate and fast predictions for any
osmological model within the parameter space covered by the
raining simulations. In the past years, several emulators have been
eveloped to predict the matter power spectrum in �CDM and some
xtended DE models (e.g. Lawrence et al. 2010; Agarwal et al. 2014;
awrence et al. 2017; Euclid Collaboration 2019; Knabenhans et al.
019; Angulo et al. 2021).
© The Author(s) 2023.
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When it comes to modified gravity theories, cosmological simula-
ions require significantly more computing resources than in standard
ravity. Indeed, modified gravity simulations require to solve for
he dynamics of at least one extra degree of freedom, which often
xhibits a non-linear equation of motion (see Llinares 2018, for a
ecent review on MG simulations).

In this work, we focus on a particular MG model, the f(R) gravity
heory (see Clifton et al. 2012, for other MG models). It is part of
he scalar–tensor family of MG theories, where the gravitational
ynamics are described by the usual metric tensor and an extra
calar field. More precisely, we work with a particular form of f(R)
ravity introduced by Hu & Sawicki (2007). More details are given in
ection 2. The Hu & Sawicki f(R) gravity model is of cosmological

nterest since it is able to produce cosmic acceleration without an
xplicit cosmological constant. Additionally, it exhibits the so-called
hameleon screening mechanism (Khoury & Weltman 2004), which
ides the deviations from GR in dense environments such as the solar
ystem. Such a mechanism is required to pass laboratory and solar
ystem scale precision tests of gravity.

Several parallel and adaptive N-body codes have been developed
ver the past years to run cosmological simulations in f(R) gravity,
uch as ECOSMOG (Li et al. 2012a), MG-GADGET (Puchwein, Baldi

Springel 2013), ISIS (Llinares, Mota & Winther 2014), a modified
ersion of AREPO (Arnold, Leo & Li 2019; Hernández-Aguayo
t al. 2021) and MG-GLAM (Hernández-Aguayo et al. 2022; Ruan
t al. 2022). A first emulator for the matter power spectrum in
(R) gravity was introduced by Ramachandra et al. (2021), named

GEMU. However, their emulator is based on COmoving Lagrangian
cceleration (COLA) simulations, which are less accurate than
-body methods in the non-linear regime. Very recently, generic
ipelines to build emulators for the matter power spectrum in f(R)
ravity and other MG theories using COLA simulations have been
eveloped (Fiorini, Koyama & Baker 2023; Mauland, Winther &
uan 2023). To date, the only f(R) emulator based on N-body

imulations is the FORGE emulator (Arnold et al. 2022), which is
uilt on top of cosmological simulations run with AREPO.

The purpose of this paper is to present a new emulator, dubbed as
-MANTIS1 (Emulator for Multiple observable ANalysis in extended
osmological TheorIeS), for the matter power spectrum boost in f(R)
ravity, defined as B(k) = Pf(R)(k)/P�CDM(k). The boost is less affected
y statistical and systematic errors and has a smoother cosmological
ependence than the power spectrum. Therefore, by emulating the
oost instead of the raw power spectrum, we significantly reduce our
omputational needs. The simulations used to calibrate E-MANTIS

re run with the modified gravity code ECOSMOG. Our emulation
trategy and simulation code are different than the ones used in
ORGE. We therefore expect both emulators to be complementary
nd we will investigate the differences within this article. We also
ake a detailed and careful study of numerical systematic which is

enerally not present in publications dedicated to modified gravity
mulators.

The paper is structured as follows. Section 2 presents some
heoretical aspects about f(R) gravity and the Hu & Sawicki model
n the context of cosmological perturbations. In Section 3, we
ntroduce the methodology and numerical codes used to run the
-body simulations and build the emulator. Section 4 estimates the

ccuracy of the emulator against statistical and systematic errors in
he training data as well as pure emulation errors. Finally, in Section 5,
https://doi.org/10.5281/zenodo.7738362

a
e

e compare the predictions from E-MANTIS to other prescriptions in
he literature and give an example of usage.

F(R) G RAVI TY

n this section, we briefly introduce the basic equations of f(R) gravity
pplied to cosmological perturbations and their phenomenology. For
ore details, we refer the reader to reviews on the subject (e.g.
otiriou & Faraoni 2010; Clifton et al. 2012). In f(R) gravity the
instein–Hilbert part of the action is modified by the addition of a
ew arbitrary function f of the Ricci scalar R

= 1

2κ2

∫
d4x

√−g [R + f (R)] + Sm, (1)

here κ2 = 8πG/c4 with G being Newton’s gravitational constant
nd c the speed of light in vacuum, g is the determinant of the space–
ime metric gμν and Sm is the action describing the matter content
f the Universe. By extremizing the total action with respect to the
etric, we obtain the modified field equations

μν + fRRμν −
(

f

2
− �fR

)
gμν − ∇μ∇νfR = κ2Tμν, (2)

here Rμν is the Ricci curvature tensor, Gμν is the Einstein tensor,
μν is the matter stress–energy tensor, ∇μ is the covariant derivative
ompatible with the metric, and � ≡ gμν∇μ∇ν . We have introduced
he derivative of the f function with respect to the Ricci scalar

R ≡ df (R)

dR
. (3)

his quantity is a new dynamical scalar field introduced by the f(R)
erm in the modified gravitational action. It is sometimes referred to
s the scalaron. The equation of motion for this scalar field can be
btained by taking the trace of equation (2)

fR = 1

3

(
R − fRR + 2f + κ2T

)
, (4)

here T = T μ
μ is the trace of the stress–energy tensor. We are

nterested in modelling the late-time evolution of the Universe.
herefore, we make the usual assumption that the Universe is filled
ith a pressure-less non-relativistic fluid called cold dark matter

CDM). In such a case, as long as we focus on sufficiently small
cales, we can write T = −ρc2, where ρ is the mass density of CDM
Chisari & Zaldarriaga 2011).

.1 Cosmological perturbations

e want to solve the field equations for cosmological scalar pertur-
ations around an homogeneous Friedmann–Lemaı̂tre–Robertson–
alker (FLRW) background. In order to do so, we use the Newtonian

auge where the line element is given by

s2 = − (
1 + 2ψ/c2

)
c2dt2 + a2(t)

(
1 − 2φ/c2

)
δij dxidxj , (5)

here ψ and φ are the two gauge invariant Bardeen potentials
Bardeen 1980) and a is the scale factor. We work in the weak
eld limit, i.e. |ψ /c2|, |φ/c2|, |fR| � 1. We also adopt the quasi-static
pproximation, which means that we neglect all time derivatives of
he three scalar fields with respect to their spatial ones. The validity
f this approximation for f(R) gravity cosmological simulations
as been confirmed by Bose, Hellwing & Li (2015). Under these
pproximations and by subtracting the background component from
quation (4), we obtain

1

a2
�∇2fR = 1

3

[
δR (fR) − 8πG

c2
δρ

]
, (6)
MNRAS 527, 7242–7262 (2024)
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here δR ≡ R − R̄ and δρ ≡ ρ − ρ̄, the over-bars denoting back-
round quantities, and �∇ is the gradient operator in Euclidean space
ith respect to the comoving coordinate �x. In order to obtain equation

6), we have used the fact that δf ∼ fRδR � δR. From the 00
omponent of equation (2), we derive the equation for the lapse
unction φ,

1

a2
�∇2φ = 8πG

3
δρ + c2

6
δR (fR) , (7)

here we have neglected terms of order H 2φ/c2 � ∂2
i φ/a2. Such

n approximation remains valid as long as we focus on small scales
uch that k 	 aH/c, where k is the comoving wavenumber. In the
ame way, from the trace of the ij component of equation (2) we
btain

2

a2
�∇2 (ψ − φ) = 8πGδρ − c2δR (fR) + c2

a2
�∇2fR. (8)

e can now combine the last three equations, which gives

1

a2
�∇2ψ = 16πG

3
δρ − c2

6
δR (fR) . (9)

inally, by combining equations (7) and (9), one can obtain

1

a2
�∇2 (ψ + φ) = 8πGδρ. (10)

his equation shows that the relation between the potential in lensing
tudies and the matter distribution is the same as in GR. More details
bout the derivations of these equations can be found for example
n Hu & Sawicki (2007), Oyaizu (2008), and Bose, Hellwing & Li
2015).

.2 The Hu and Sawicki model

rom now on we focus on a particular f(R) model, proposed by Hu
Sawicki (2007), which uses the functional form

(R) = −m2 c1

(
R/m2

)n

c2

(
R/m2

)n + 1
, (11)

here c1, c2, and n are dimension-less parameters and m is a curvature
cale. This scale is taken to be

2 ≡ �mH 2
0

c2
, (12)

here �m is the current fractional matter density and H0 is the Hubble
arameter today.
It is interesting to perform an expansion of the f(R) function at

igh curvature with respect to m2

lim
R	m2

f (R) 
 − c1

c2
m2 + c1

c2
2

m2

(
m2

R

)n

. (13)

irst, we see that the Hu & Sawicki model is equivalent to a
osmological constant in the limit where c1/c

2
2 → 0 and c1/c2 is

ept constant. Therefore, this model is able to produce cosmic
cceleration. In order to closely match the �CDM expansion history
ne can fix

c1

c2
= 6

��

�m

, (14)

here �� is the current fractional density of dark energy.
Secondly, at finite c1/c

2
2 and fixed n, the deviation from a pure

osmological constant vanishes as the density increases. This is an
xample of a screening mechanism (see for example Brax et al.
022, for a recent review), and in particular the so-called chameleon
NRAS 527, 7242–7262 (2024)
echanism (Khoury & Weltman 2004). Such a mechanism allows the
u & Sawicki model to exhibit significant deviations from �CDM

t cosmological scales while recovering GR in the Solar System,
here the laws of gravity are more tightly constrained. The remaining

ree parameters n and c1/c
2
2 control the efficiency of the chameleon

creening.
The scalar field fR can be written in terms of the scalar curvature
as

R = −n
c1

(
R

m2

)n−1

[
c2

(
R

m2

)n + 1
]2 
 −n

c1

c2
2

(
m2

R

)n+1

. (15)

he second equality is an approximation valid in the high curvature
egime R 	 m2. Such an approximation remains valid up to z = 0
or the choice of m2 given by equation (12) as explained in Hu &
awicki (2007) and Oyaizu (2008). In practice, it is useful to replace

he parameter c1/c
2
2 by the background value of the scalaron field

oday fR0 . Indeed, by combining equations (13), (14), and (15), one
an write in the high curvature limit,

(R) 
 −2� + fR0

n

Rn+1
0

Rn
, (16)

here R0 is the current background value of the Ricci scalar and �

s the cosmological constant.
At the background level, the deviation from an equation of state
= −1 is of the order of fR0 (Hu & Sawicki 2007). In this

ork, the strongest modification of gravity that we consider is
R0 = −10−4. As a consequence, for all practical purposes, the
ackground expansion history is identical to �CDM. Additionally,
or such values of fR0 , the effect of f(R) gravity on the evolution of
he matter density field at high redshift is negligible. The differences
etween f(R) and �CDM will arise at the level of the late-time non-
inear matter clustering.

We restrict our study to the case n = 1, which is the most common
ase in the literature. Performing cosmological simulations with n

1 is also much more cpu-time consuming (see Section 3.1). We
efer the reader to other papers such as Ramachandra et al. (2021)
nd Ruan et al. (2022) for the case n �= 1.

ME T H O D S

.1 Codes

he suite of simulation was performed with the automated pipeline
ntroduced in Blot et al. (2015) and further refined in Blot et al.
2021). In this study, we have extended it to f(R) modified gravity.
ote that as stated above, the effect of modified gravity on the

tructure formation at high redshift (initial condition), and its impact
n the background evolution are both negligible. The main changes
re therefore limited to the dynamical solver.

The linear matter power spectrum was computed using the
AMB Boltzmann solver (Lewis, Challinor & Lasenby 2000). Initial
onditions were generated using MPGRAFIC (Prunet et al. 2008)
hich assumes Gaussian random field and second-order Lagrangian
erturbation theory (2LPT) (Crocce, Pueblas & Scoccimarro 2006).
he initial redshift was chosen as low as possible while avoiding
article crossing (in practice zi ∼ 50). With this choice, numerical
rrors remain limited (Michaux et al. 2021).

Particles are evolved in a periodic cubic box using the f(R) version
f the RAMSES N-body code (Teyssier 2002) called ECOSMOG (Li
t al. 2012a). RAMSES implements a particle-mesh (PM) method with
daptive mesh refinements (AMR) in overdense regions. A mesh is



Power spectrum emulator in f(R)CDM cosmology 7245

r
p
r
t
m
t
6
t
o
s
o
p
=
p
r

(
m
h
b
a

3

3

I
f

B

T
d
b
r
o
s
O
2

i
p
n
e
3
t
p
s
d

g
a
e
r
w

2

t
3

t
c
p
f

Table 1. Cosmological models used in the cosmo simulation suite. The first
line (in italics) is our reference model F5(�). Models 4–13 vary one of the
5 �CDM parameters by ±25 per cent. Models 2 (F4) and 3 (F6) vary the
fR0 parameter. The parameters in bold are the ones that are being varied
by a specific model. The values of �� are not explicitly given, but they are
fixed by the flatness condition �� = 1 − �m − �r. The radiation density
parameter is fixed by the CMB temperature to �r ∼ 10−4. For each model
in this table we run the corresponding �CDM simulations in addition to the
f(R) ones.

Model |fR0 | �m σ 8 h �b ns

F5(�) 10−5 0.3153 0.8111 0.6736 0.049302 0.9649
F4 10−4 0.3153 0.8111 0.6736 0.049302 0.9649
F6 10−6 0.3153 0.8111 0.6736 0.049302 0.9649
�+

m 10−5 0.3941 0.8111 0.6736 0.049302 0.9649
�−

m 10−5 0.2365 0.8111 0.6736 0.049302 0.9649
σ+

8 10−5 0.3153 1.0140 0.6736 0.049302 0.9649
σ−

8 10−5 0.3153 0.6083 0.6736 0.049302 0.9649
h+ 10−5 0.3153 0.8111 0.8420 0.049302 0.9649
h− 10−5 0.3153 0.8111 0.5052 0.049302 0.9649
�+

b 10−5 0.3153 0.8111 0.6736 0.061620 0.9649
�−

b 10−5 0.3153 0.8111 0.6736 0.036980 0.9649
n+

s 10−5 0.3153 0.8111 0.6736 0.049302 1.2060
n−

s 10−5 0.3153 0.8111 0.6736 0.049302 0.7237
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efined (i.e. divided into eight sub-cells), whenever the number of
articles inside it exceeds a given threshold mref, up to a maximum
efinement level lmax. The (linear) modified Poisson equation for
he Newtonian potential (equation 9) is solved through a standard

ultigrid approach (Guillet & Teyssier 2011). On the other hand,
he non-linear equation of motion for the extra scalar field (equation
) was solved using a Newton–Gauss–Seidel method embedded in
he multigrid approach (Li et al. 2012a). The solver has been further
ptimized in Bose et al. (2017) thanks to the existence of analytical
olutions for the particular case n = 1. We have therefore used this
ptimized ECOSMOG version. An important parameter is the required
recision for the non-linear scalar field solver: we have set it to εsf

10−7, and we have checked that with this choice, the errors on the
ower spectrum boost are much smaller than 1 per cent in the studied
ange of wavenumbers.

The matter power spectrum was estimated using POWERGRID

Prunet et al. 2008) with a Cloud-In-Cell assignment (CIC). We use a
esh grid with 64 times more cells than the RAMSES coarse grid. We

ave dropped the matter power spectrum values for wavenumbers
eyond half the Nyquist frequency of the POWERGRID grid to avoid
liasing.

.2 Emulation

.2.1 The matter power spectrum boost

nstead of emulating the matter power spectrum itself, we decide to
ocus on the matter power spectrum boost defined as

(k) = Pf (R)(k)/P�CDM(k). (17)

his quantity encodes the enhancement of the matter power spectrum
ue to f(R) gravity with respect to a �CDM scenario. It brings several
enefits that simplify the emulation procedure. First, the dynamical
ange of the power spectrum boost is significantly smaller than the
ne of the full power spectrum. We go from emulating a quantity
panning several orders of magnitude to one that is of the order of
(1) at all scales, which is a simpler task to perform (Angulo et al.

021).
Secondly, we have verified that the power spectrum boost is mostly

ndependent of the baryon density parameter �b, the reduced Hubble
arameter h2, and the primordial spectral index ns, even at deeply
on-linear scales. This is in agreement with previous studies (Winther
t al. 2019). In order to build an emulator, we only need to consider the
D parameter space given by the background value of the scalar field
oday fR0 , the total matter density parameter �m, and the primordial
ower spectrum normalization3 σ 8. The dependence of the power
pectrum boost on the cosmological parameters is discussed in more
etails in Section 3.2.2.
Thirdly, by taking the ratio of the power spectrum obtained in f(R)

ravity and �CDM from the same exact initial conditions, we obtain
significant cancellation of cosmic variance and mass resolution

rrors, which dominate the error budget at large and small scales,
espectively. With this method, we can build an accurate emulator
ithout having to perform large volume and very high resolution
Defined as H0 = 100h km s−1 Mpc−1 , where H0 is the Hubble constant
oday.
We follow the convention of previous works in the field, and by σ 8 we refer
o the value obtained assuming a linear �CDM evolution, even for f(R)CDM
osmologies. The parameter σ 8 is used as an indirect normalization of the
rimordial power spectrum, which is therefore the same in both �CDM and
(R)CDM for a given set of cosmological parameters.

T

c
f
i
s
a
�

imulations, as it would be necessary for the raw matter power
pectrum. More details are given in Section 4.1.

An important caveat of emulating the boost is that in order to get
he full power spectrum in f(R) models, it is necessary to combine
he predictions of E-MANTIS with an independent �CDM emulator.
owever, current state-of-the-art �CDM emulators usually achieve
er cent level accuracy (Angulo et al. 2021; Euclid Collaboration
021; Moran et al. 2022).

.2.2 Defining the parameter range

efore fixing the emulation parameter space, we explore the depen-
ence of the matter power spectrum boost with the six cosmological
arameters {fR0 ,�m, σ8, h, �b, ns}. Our aim is to show that in order
o emulate the matter power spectrum boost, we only need to consider
subset of these parameters.
We define two reference cosmological models (one with usual

ravity and the other one with modified gravity): the �CDM
arameters take the best-fitting values from Planck Collaboration
I (2020), while the corresponding f(R)CDM parameters takes

he same values but with fR0 = −10−5. From this reference we
uild pairs of models where each �CDM parameter is varied by
25 per cent at a time. We also study models with fR0 = −10−4 (F4)

nd fR0 = −10−6 (F6) to investigate the effect of fR0 (corresponding
o a variation of ±20 per cent for log |fR0 | while matching standard
alues found in the literature for comparison). We always consider
flat universe such that �� = 1 − �m − �r and take a constant

adiation density parameter fixed by the CMB temperature to �r

10−4. The parameter values of these models are summarized in
able 1.
For each model, we evolve Npart = 5123 DM particles in a periodic

ubic box of length size Lbox = 328.125 h−1Mpc in a �CDM and a
(R) simulation. Both simulations are initialized using the exact same
nitial conditions and same resolution. We perform such pairs of
imulations for five independent initial conditions, which are shared
cross the different models. In total, we realize a set of 65 pairs of
CDM and f(R) simulations to study the cosmological dependence
MNRAS 527, 7242–7262 (2024)
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Table 2. Table summarizing the main characteristics of the EMULATOR simulation suite. Lbox is the side length of the simulation box, Npart the number of DM
particles, mpart the mass resolution (which varies depending on the particular cosmology, here are given the two most extreme values), lmin the coarse refinement
level (corresponding to a coarse grid of 5123), lmax the maximum refinement level, mref the refinement threshold, �x the spatial resolution of the maximum
refinement level, εp and εsf are the convergence criteria for the modified Poisson equation (equation 9) and the extra scalar field equation of motion (equation
6) respectively, Nreal the number of realizations per model, Ncosmo the number of cosmological models (the ×2 factor accounts for the corresponding �CDM
simulations performed for each f(R) model) and zi the approximate initial redshift (which is also cosmology dependent).

Lbox(h−1Mpc) Npart mpart(h−1 M�) lmin lmax mref �x(h−1kpc) εp(εsf) Nreal Ncosmo zi

328.125 5123 (1.73–2.88) × 1010 9 15 14 10 10−4(10−7) 5 110(× 2) ∼50

Figure 1. Cosmological dependence of the matter power spectrum boost at z = 0. In each subplot, one of the six cosmological parameters (as indicated in the
inset) is varied by ±25 per cent around the reference model F5(�) from Table 1. The lower panels give the relative difference with respect to the reference. The
light bands mark the ±1 per cent variation limit. Inside it the y axis scaling is linear and outside it is logarithmic. Only the parameters fR0 , σ 8, and �m have an
impact greater than 1 per cent on the matter power spectrum boost. We can therefore neglect the effect of the other parameters when building the emulator and
keep them fixed to their reference values.
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f the matter power spectrum boost. We refer to this ensemble of
imulations as the cosmo simulation suite. From this simulation suite,
e measure the matter power spectrum boost for each cosmology

nd average it over the 5 realizations. The numerical parameters of
hese simulations are the same as the emulator simulation suite that
s introduced in Section 3.3 (see Table 2).

Fig. 1 shows the dependence of the matter power spectrum boost
ith each cosmological parameter. Each subplot varies one of the six
arameters independently from the others. The lower panels show the
elative difference with respect to the reference model F5(�). These
esults show that the variation of the boost with the parameters h, �b,
nd ns is very weak up to small scales of the order of k ∼ 10 hMpc−1.
or �b and h, the relative variation of the boost remains smaller than
.2 per cent and 1 per cent, respectively, at all scales considered, i.e.
or 0.03 h Mpc−1 < k < 10 h Mpc−1. In the case of ns, the relative
ariation is smaller than 1 per cent except at the smallest scales, where
t starts to cross the 1 per cent line. We stress here the fact that we have
erformed very strong variations of the cosmological parameters. If
e had considered only variations within the current observational

onstraints (Planck Collaboration VI 2020), the effect on the boost
ould have been completely negligible. The weak dependence on
NRAS 527, 7242–7262 (2024)
shown in Fig. 1 explains why Harnois-Déraps et al. (2023) find,
n their forecast, that the weak lensing convergence power spectrum
laces very weak constraint on this parameter.
As expected the parameter with the strongest impact is fR0 , which

or the F4 model, can lead to an enhancement of the matter power
pectrum of up to 40 per cent with respect to the �CDM scenario.
he parameters σ 8 and �m lead to variations of up to 8 per cent and
per cent, respectively. These results are in qualitative agreement
ith previous works such as Winther et al. (2019).
One can interpret why σ 8 and �m play an important role in terms

f the screening mechanism. For instance, if the amount of matter
n the Universe increases, the overall density does the same, and
ecause of the chameleon screening mechanism, the effect of f(R)
ravity gets weaker. Indeed, we can see in Fig. 1 that the matter power
pectrum boost is a decreasing function of �m, the other parameters
eing fixed. The same goes for σ 8. With a higher σ 8 the amount of
lustering in the Universe increases and overdensities are globally
enser. The screening is therefore stronger and the effect of f(R)
ravity is weaker.
We have established the impact of each individual cosmological

arameter on the matter power spectrum boost around the reference
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5(�)model. In particular, the parameters ns, h and �b have an effect
maller than 1 per cent, even for very large variations of those
arameters. We could therefore ignore them in the construction
f the emulator. However, the simultaneous variation of multiple
arameters might produce a non-negligible effect. In Appendix A,
e investigate the evolution of errors in the most sensitive parts of the
arameter space. We find that the cost of ignoring those parameters
n the accuracy of the power spectrum boost determination is still
maller than 1 per cent in most cases. In the worst cases, mostly
round the edges of our wide cosmological parameter space, the
nduced error can reach the 2 − 3 per cent level. As we show in
ection 4.1.1, this is less than the systematic errors in our training
ata.
From this study, we can conclude that in order to build an

mulator, with a few per cent level accuracy, for the matter power
pectrum boost, it is enough to focus on the three parameters
fR0 , �m, σ8}. Considering a 3D parameter space, instead of the
ull 6D dimensional, reduces the number of simulations we need
o perform in order to achieve a given emulation accuracy. Indeed,
erforming an interpolation in 3D requires less samples than in 6D.
iven the computational cost of carrying out N-body simulations in

(R) gravity, this is an important aspect.
Ideally, we would build an emulator that covers all possible

osmological models within this 3D parameter space. However, we
an only emulate a finite volume of it. This volume needs to be
arge enough to accommodate all reasonable cosmological models
s well as some margin around them, so that the emulator can
e properly used in any theoretical, numerical, or observational
nalysis. We decide to consider variations of �m and σ 8 of up to
5 per cent around the current best-fitting values in �CDM from
lanck Collaboration VI (2020). This range is enough to explore very
onservative deviations of order ∼5σ from the constraints obtained
n f(R) gravity with the galaxy clustering ratio (Bel et al. 2015)
or �m and with galaxy clusters (Cataneo et al. 2015) for σ 8. Both
tudies exclude models with −fR0 ≥ 10−4 at the 2σ level. We will
se this value as the upper bound for fR0 . For the lower bound
e take fR0 = −10−7, which corresponds to an almost vanishing
odification of the matter power spectrum with respect to �CDM.

n the end the emulator covers the parameter range given by

− 7 ≤ log |fR0 | ≤ −4, (18)

.2365 ≤ �m ≤ 0.3941, (19)

.6083 ≤ σ8 ≤ 1.0140. (20)

uch large range of variation of the parameters is also important to
e able to measure their impact on the boost. This is key to accurately
stimate the derivatives of the power spectrum boost with respect to
he cosmological parameters, so as to make an accurate interpolation.
n practice E-MANTIS works with − log

∣∣fR0

∣∣ instead of fR0 , since it
mproves its numerical accuracy. We fix the other parameters to their
est-fitting values from Planck Collaboration VI (2020): h = 0.6736,
b = 0.049302, and ns = 0.9649.
We conclude this section by noting that, as mentioned in Sec-

ion 3.1, we limit our study to the case where the modified gravity
arameter n = 1. This is mainly due to computational limitations,
ince performing N-body simulations for other values of this pa-
ameter is much more time consuming (Bose et al. 2017). However,
amachandra et al. (2021) shows that a variation of ±25 per cent
round the value n = 1 has an effect smaller than 1 per cent on the
atter power spectrum boost. Therefore, our emulator would also be

alid in that regime, at least for scales k � 1 h Mpc−1, which is the
ange of validity of their predictions. Moreover this work suggests
hat the most sensitive part of the boost with respect to a variation of
is the one at intermediate scales near k 
 0.5 h Mpc−1.

.2.3 Sampling the parameter space

e now detail the strategy employed to sample the model parameter
pace with training points. This ensemble of training models is
sually referred to as the experimental design (ED). Since N-body
imulations are highly time consuming, we are limited by the number
hat can be performed. Usually, cosmological emulators use a number
f training models of the order of O(10 − 100) (Nishimichi et al.
019; Euclid Collaboration 2021). In order to efficiently sample the
arameter space with a reduced number of points, it is common to
se a Latin hypercube sampling (LHS) method. It has been shown
o give good performances when combined with a Gaussian process
GP) emulation (Habib et al. 2007).

A Latin hypercube design (LHD) is generated by first dividing the
-dimensional parameter space into a ND regular grid. Then N grid

ells are randomly selected with the condition that each cell cannot
ave any common coordinate with the other ones. Finally, within each
elected grid cell a point is randomly sampled (Garud, Karimi & Kraft
017). Usually, additional criteria are imposed. For instance, one can
enerate a set of k independent LHD and then select the one that
aximizes the minimal distance between sample points (maximin-

istance condition). This kind of method ensures that the ED
ptimally covers the whole parameter space in a homogeneous way.
One possible modification of the LHS method is the maximin-

istance Sliced LHD (SLHD) introduced by Ba, Myers & Brenneman
2015). A LHD is divided into sub-samples with an equal number of
oints each. The particularity is that each sub-sample, also referred
o as a slice, verifies the LHD condition on its own. A version of the

aximin-distance condition is also applied, where the maximized
istance is a mixture of the distances between points in each slice
nd in the whole sample. We refer the reader to the original paper for
ore details about the precise implementation. The SLHD sampling

echnique was used in Nishimichi et al. (2019) in order to separate
he ED points into a training and a validation sample. In this way, the
alidation points are homogeneously distributed over the parameter
pace, while at the same time being as far as possible from the training
oints. In this work, we use the R package SLHD4 to generate a
LHD with 5 slices of 20 points each (hereafter named primary
LHD). We have performed cosmological simulations only for the
rst four slices (i.e. 80 cosmological models). Indeed, we found that it
as more beneficial to sample additional points by targeting specific

egions of the parameter space, instead of adding an additional set
f homogeneously distributed models (see the next paragraph). The
eft panel of Fig. 2 shows the distribution of models of the first
our slices from the primary SLHD. Each slice is represented by a
ifferent colour. We have sampled �m and σ 8 with an homogeneous
rior. For fR0 , we sample homogeneously in log

∣∣fR0

∣∣ instead.
Sampling training points with a LHS method is a good strategy

hen we have no a priori knowledge of how the signal that we want
o emulate varies over the whole parameter space. However, if the
radient (or its derivatives) of the signal is stronger in a particular
egion, it will require a higher density of training points to get an
ccurate emulation. In this work, we use a strategy similar to the one
ollowed by Angulo et al. (2021) in order to add training points in
he regions where emulation is more difficult. We start by building
MNRAS 527, 7242–7262 (2024)
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Figure 2. 2D projections of the model points used to train and test the emulator. Left: each colour represents one of the first four slices of the primary sliced
Latin hypercube design (SLHD). Each slice is composed of 20 points, forming a LHD on the 3D parameter space {�m, σ8, fR0 }. The black star corresponds to
our reference F5 cosmology. Right: training points of the final emulator. The points in orange correspond to the four slices of the primary SLHD. The red ones
are the additional training models drown from the refinement SLHD by the iterative procedure described at the end of Section 3.2.3. They are mostly distributed
towards the high values of fR0 , while staying uniform in �m and σ 8. This is the region where the emulation errors are larger.
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preliminary emulator using three slices (i.e. a total of 60 training
odels) from the primary SLHD. We can use the remaining slice

i.e. 20 validation models) to assess the accuracy of this emulator
nd decide whether or not it is necessary to add new training
oints.
Since additional training points are needed, we generate a second

LHD (hereafter the refinement SLHD) with 100 models per slice.
n order to sample new training points from these slices, we follow
n iterative procedure. First, we randomly select 10 points from the
rst slice, with a selection probability proportional to the emulation
rror. We use the interpolation error directly given by the GP itself.
ven though this estimation is not exact, it gives a good order of
agnitude for our purpose here. We then re-train the emulator with

he newly selected training models. Finally, we assess once again the
ccuracy of the emulator with the validation models. We repeat this
rocedure until the desired accuracy is obtained.
In the end, we add a total of 30 training models using this method.
ith the obtained gain in emulation accuracy, the emulation errors

re now smaller than 1 per cent even for the most extreme models
see Appendix B for more details). The final version of the emulator
s trained using all available simulated models, i.e. the 80 models
rom the first four slices of the primary SLHD and the additional 30
efinement models. The final distribution of the 110 training points
s shown in the right panel of Fig. 2.

.2.4 Smoothing the power spectrum boost

or each cosmological node, we measure, from our simulations, the
inned matter power spectrum in f(R) gravity and the corresponding
CDM cosmology. These raw power spectra need some treatment

efore they can be used to train the emulator. Indeed, they are noisy
NRAS 527, 7242–7262 (2024)
ue to the fine binning in k and the finite volume of the simulations.
uch noise reduces the accuracy of the emulator.
In order to smooth out the training data it is common to use

ltering techniques (e.g. Ramachandra et al. 2021; Arnold et al.
022). In this work, we adopt a different strategy. We start by
ebinning the power spectra into larger k bins. We adopt a constant
inear binning with �k 
 0.009hMpc−1 from k = 0.024h Mpc−1 to
= 0.18h Mpc−1 (in terms of bin edges). For the remaining scales
e use a constant logarithmic binning up to k = 10h Mpc−1. In order

o avoid a discontinuity in the bin widths, the first logarithmic bin
as the same size as the linear bins. The rebinned power spectra have
number of bins Nk = 90 instead of the initial Nraw = 1040 bins. We

hen compute the boosts by taking the ratio of the power spectra in
(R)CDM with �CDM. Additionally, we simulate a number Nreal = 5
f independent realizations per cosmological model and average the
oosts over them. In the end, we obtain a signal that is smooth enough
o train the emulator and with enough bins in k. Appendix B shows
ow the number of realizations impacts the emulation accuracy.

.2.5 Emulation strategy

e detail in this section the procedure adopted to interpolate between
he training cosmological models. We focus initially on a single
edshift. The strategy to extend the emulator to arbitrary redshifts is
xplained at the end.

Our training data are the smoothed power spectrum boosts from the
osmological nodes. They each have Nk = 90 bins in k. Emulating
very bin independently is a quite inefficient strategy. Indeed, the
ifferent k-bins are highly correlated with each other with respect to
he variation of the cosmological parameters. We can therefore use
principal component analysis (PCA) to reduce the dimensionality
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f the training data. In a PCA, the training data is decomposed in a
asis of orthogonal functions

(θ ; k) =
NPCA∑
i=1

αi(θ )φi(k) + ε, (21)

here θ represents the vector of cosmological parameters, the φi

re a set of orthogonal basis functions, and NPCA is the number of
asis functions used to describe the signal. Such a decomposition
s obtained by diagonalizing the covariance matrix of the training
ata. The quantity ε represents the part of B that is not captured
y the truncated decomposition. By setting NPCA = Nk, we would
ave ε = 0 identically. In practice, only a reduced number of PCA
oefficients will be required to describe most of our signal. The base
unctions φi are independent of the cosmological parameters and
ll the cosmological dependence is carried by the αi coefficients.
urthermore, these coefficients are now fully independent from each
ther, which was not the case of the k bins. We find that with NPCA

5, we are able to describe more than 99.99 per cent of the total
ariance contained in the power spectrum boosts. By increasing the
umber of PCA coefficients, we would mostly capture the noise in
he training signals. Additionally, we have verified that, given our
trategy of binning in k, and the number of PCA coefficients that
e keep, the absolute error introduced by this decomposition is on

verage smaller than 0.1 per cent.
We now build an independent emulator for each of the NPCA coef-

cients. We use a Gaussian process (GP) regression to interpolate the
CA coefficients between training nodes. GPs are commonly used in
osmological emulators (e.g. Habib et al. 2007; Euclid Collaboration
019; Angulo et al. 2021; Ramachandra et al. 2021; Arnold et al.
022). One of the most used kernels is the radial-basis function (RBF)
ernel. This kernel states that the covariance of the signal decreases
s a squared exponential with the distance in the parameter space. It
s characterized by a length scale in the isotropic case, or a length
cale per parameter space dimension in the anisotropic case. The
BF kernel is most efficient at emulating smooth quantities, since it

s infinitely differentiable. For our emulator we use a generalization
f the RBF kernel to less smooth functions, the Matern kernel. We
nd that an anisotropic Matern-5/2 kernel gives the best emulation
ccuracy given our training data. We refer the reader to Rasmussen &
illiams (2006) for more in depth details about GPs and kernels. It

s worth mentioning that before performing the PCA, we standardize
he training data and model points. This means that we remove the

ean and rescale them in order to obtain a unit variance distribution.
his simple step simplifies the usage of the PCA and GP emulation
nd improves their performance. We use the Python package SCIKIT-
EARN5 (Pedregosa et al. 2011) to perform the standardization of the
raining data, the PCA, and the GP regression.

We have just described the procedure to build the emulator at a
iven redshift. We have a total of 19 redshift nodes between 0 < z < 2
t our disposal (see Section 3.3). In practice, we build an independent
mulator for each redshift node. Then, for any arbitrary redshift, we
inearly interpolate the predicted power spectrum boost between the
wo closest redshift nodes. We have checked that this method is
ufficient to obtain interpolation errors smaller than 1 per cent at
ll scales and for all cosmological models. More details are given
n Appendix C. Such linear interpolation in redshift is also used in
ther modified gravity emulators (Ramachandra et al. 2021; Arnold
t al. 2022).
https://scikit-learn.org/stable/index.html

a
c

F

.3 Emulator simulation set

e perform N-body simulations for each of the Ncosmo = 110
osmological models sampled in Section 3.2.3. We use the numerical
imulation chain described in Section 3.1. Each simulation evolves
123 DM particles in a cubic periodic box of side length Lbox =
28.125h−1Mpc, which gives a mass resolution of the order of

2 × 1010h−1 M� (depending on the particular cosmology), from
n initial redshift of zi ∼ 50 to z = 0. For each of the Ncosmo models,
e simulate Nreal = 5 independent random realizations, covering a

otal effective volume of (560h−1Mpc)3. For each f(R) cosmological
odel and realization, we perform the equivalent �CDM simulation.

n the end, this gives a total of 1100 cosmological simulations. We
efer to this large set of simulations as the emulator simulation set.
he CPU-time usage for this simulation suite was of ∼3.5 million
ore-hours using the AMD Irene ROME partition of the Joliot-
urie supercomputer hosted at the Très Grand Centre de Calcul

TGCC). The main characteristics of our emulator simulation set
re summarized in Table 2. We save the matter power spectra at 19
edshift outputs per simulation: z = 0, 0.05, 0.1, 0.15, 0.25, 0.3, 0.42,
.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.4, 1.5, 1.74, 2.

.4 Simulation set for the evaluation of systematic and
tatistical errors

he finite volume and mass resolution of the N-body simulations
roduce non-negligible errors on the measured power spectrum
oosts. A proper estimation of such effects would require us to
erform a dedicated set of simulations with fixed mass resolution
nd varying volume to assess the finite volume and sample variance
rrors. Another set with fixed volume and varying number of DM
articles would be needed to estimate the resolution errors. However,
t would require a significant amount of computing resources. This
s particularly true in f(R) gravity, since, as we will show in the next
ection, the resolution errors are highly dependent on the value of fR0 .
t is therefore important to assess the accuracy of our simulations for
ifferent f(R) models, which again increases the computational cost.
We resort instead to a more approximate method. We perform a set

f simulations where we vary the simulation box-size while keeping
he number of DM particles fixed. The simulations used to build our
mulator evolve Npart = 5123 DM particles in a cubic periodic box of
ide Lbox = 328.125 h−1Mpc. We refer to this box-size and resolution
s the standard resolution (SR). In order to assess the systematic
rrors at small scales due to the finite mass resolution we consider
second class of simulations with Lbox = 164.0625 h−1Mpc. We

abel them as the high resolution (HR) simulations. The HR box has
volume eight times smaller than the SR box and the same number
f DM particles, which corresponds to a mass resolution eight times
igher. The HR box-size is relatively small and will suffer from
n important cosmic variance. As long as it only affects the largest
cales, we can still use it to test the convergence of the SR simulations
t small scales. We also run simulations with larger box-sizes in order
o assess the impact of the simulation box length. More precisely we
onsider box-sizes of Lbox = 656.25 and 1312.5 h−1Mpc, which
e refer to as low resolution (LR) and very low resolution (VLR),

espectively. These simulation boxes have a volume 8 and 64 times
igger than the SR, respectively, and the same number of DM
articles. We use them to estimate the accuracy of our measurements
t large scales. More precisely, with this method we are probing a
ombination of sample variance and finite volume effects.

For each box-size, we run a single realization of the models F4,
5, and F6 as well as the corresponding �CDM cosmology. In order
MNRAS 527, 7242–7262 (2024)
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Table 3. Table summarizing the different simulation boxes used to study the large scale and mass resolution errors of
the matter power spectrum boost. Lbox is the side length of the simulation box and mpart the mass of an N-body particle.
The number of DM particles in each simulation is 5123. The other numerical parameters are identical to those described
in Table 2. The models F4, F5, and F6 correspond to the cosmological parameters given in Table 1. Inside the parentheses
are given the number of realizations performed per f(R) model. For each f(R) model and realization, we also perform the
corresponding �CDM simulation.

Name Lbox(h−1Mpc) mpart
(
h−1 M�

)
Models

High Res. (HR) 164.0625 2.9 × 109 F4, F5, F6 (× 1)
Standard Res. (SR) 328.125 2.3 × 1010 F4, F6 (× 1), F5 (× 30)
Low Res. (LR) 656.25 1.8 × 1011 F4, F5, F6 (× 1)
Very Low Res. (VLR) 1312.5 1.5 × 1012 F4, F5, F6 (× 1)
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o study the impact of the number of realizations, we also simulate
n ensemble of 30 independent realizations with the SR box for the
5 model (and the equivalent �CDM cosmology). The volumes and
ass resolutions of this suite of simulations is given in Table 3.
he other numerical parameters are identical to the ones used in the
mulator suite (see Table 2).

N U M E R I C A L C O N V E R G E N C E S T U D I E S

he final accuracy of the emulator is affected by both the errors on
he training data and the pure emulation errors of the GP regression.
n this section, we estimate the amplitude of both sources of errors.

.1 Systematic and statistical simulation errors

n this section, we study the impact of the finite simulation volume
nd mass resolution on the matter power spectrum boost. In particu-
ar, we show that by computing the matter power spectrum boost we
et more accurate results, both at large and small scales, than with
he full power spectrum. We use the simulation suite described in
ection 3.4.

.1.1 Small scale convergence: impact of the mass resolution

e start by comparing the measured matter power spectra and boosts
rom the different boxes at small scales. In this test we use the HR
imulations as a reference. For the SR, LR, and VLR boxes we
ompute the quantity

res(z, k) = Y − YHR

YHR
, (22)

here Y is a placeholder for the power spectrum P or the boost B.
he results at z = 0 for the F5 model are shown in Fig. 3. The left
anel shows �res for the total matter power spectrum. The resolution
rop in the SR box starts around k 
 2h Mpc−1. At smaller scales
he SR power spectrum is systematically underestimated, reaching
n error of ∼ 10 per cent at k = 10 h Mpc−1. Such finite resolution
ffects are well known. They are in agreement with previous �CDM
imulations run with RAMSES and the same mass resolution (Rasera
t al. 2022). The fluctuations at larger scales are mainly due to the
arge cosmic variance of the HR box and the difference in realizations
rom one box-size to another.

We now turn to the power spectrum boost. The corresponding
esolution error �res is shown in the right panel of Fig. 3. The lower
esolution runs tend to overestimate the boost at intermediate to small
cales. In the case of the SR box, this effect induces an error smaller
han 2 per cent. As explained in Li et al. (2012b), a low resolution
imulation is not able to properly resolve the screening mechanism in
NRAS 527, 7242–7262 (2024)
igh density environments. As a consequence, the clustering in f(R)
ravity, and therefore the matter power spectrum, is overestimated
n a scale-dependent manner. In addition to this overestimation at
ntermediate to small scales, the LR and VLR boosts show a severe
rop at the very small scales. However, this drop is not visible in the
R run, where |�res| is smaller than 1 per cent at k = 10h Mpc−1.
n any case, this comparison shows that the mass resolution error is
educed by almost an order of magnitude when going from the total
ower spectrum in f(R) gravity to its boost with respect to �CDM.
In addition to the wavenumber k, the resolution errors also depend

n redshift and the parameter fR0 . This is shown in Fig. 4 for the SR
imulation box. The top left panel gives �res for the three models F4,
5, and F6 and at two different redshifts z = 0, 2. The overestimation
f the boost at intermediate scales is more important for the F4 model
nd vanishes for F6. Indeed, the screening mechanism enters into
lay in denser environments for higher values of

∣∣fR0

∣∣. At z = 2, the
ower spectrum boost suffers from a resolution drop at very small
cales, which also depends on the value of fR0 . Indeed, at z = 2, f(R)
ravity has just started having an effect on matter clustering. This
ffect being small, the lower resolution simulations are not able to
esolve it, while the higher resolution ones predict it more accurately.
n the other hand, the overestimation at intermediate scales is

maller.
The remaining panels of Fig. 4 give |�res| at all redshifts (0 < z

2) and scales of interest for the models F4, F5, and F6. For F6
he resolution error on the boost is smaller than 1 per cent most of
he time and smaller than 2 per cent virtually for all redshifts (0 <

< 2) and scales considered (k < 10h Mpc−1). In the case of F5,
he accuracy is better than 3 per cent in most of the z − k plane.
owever, the resolution error in the z�1 and k � 7h Mpc−1 region is
f the order of 3 − 6 per cent. Finally, for the F4 model the accuracy
s of the order of 1 − 2 per cent in most of the z − k plane and only
eaches the 3 per cent level at very low redshifts and small scales as
ell as at high redshifts and very small scales. Overall, we estimate

hat the systematic resolution errors in our power spectrum boost
easurements are always smaller than 3 per cent in the range 0 < z

2 and k � 7 h Mpc−1.

.1.2 Large scale convergence: impact of the simulation box length

e now perform the same kind of analysis but focusing on large
cales. This time the reference box-size is the VLR and we compute
or the LR, SR, and HR simulation boxes the quantity

vol(z, k) = Y − YVLR

YVLR
, (23)

here, as in the previous section, Y stands for the power spectrum P
r its boost B.
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Figure 3. Results of the mass resolution convergence test at z = 0 for the F5 model. The HR box is used as a reference and the measurements from the SR,
LR, and VLR boxes are compared to it. The left panel shows the relative difference of the total matter power spectrum. The systematic drop of the SR power
spectrum starts around k 
 2h Mpc−1 and reaches the 10 per cent level at k = 10h Mpc−1. The right panel shows the same comparison for the matter power
spectrum boost. This time the resolution error in the SR box remains under the 2 per cent level at all considered scales. The mass resolution errors are up to an
order of magnitude smaller in the power spectrum boost than in the full power spectrum.
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The results for the model F5 at z = 0 are shown in Fig. 5. At the
argest scales available for the SR and HR resolutions, the relative
ifference on the power spectrum is of the order of 50 per cent and
00 per cent, respectively. However, when considering the boost,
he large scale errors remain under the 1 per cent level even for the
undamental mode of the HR box. We have checked that this results
old for the three models F4, F5, and F6 and all redshifts 0 < z < 2.
With this test, we are really probing a combination of cosmic

ariance and finite volume errors. However, the purpose here is
ot to carry a detailed investigation of such effects, which would
equire a more dedicated study. These results simply show that by
aking the ratio of the matter power spectrum in f(R) gravity with the
orresponding �CDM cosmology, there is a very large cancellation
f large scale errors (of the order of ∼ 100 per cent). Such a large
ancellation happens because the f(R) and �CDM simulations are
volved from the same initial conditions. Furthermore, the impact
f f(R) gravity on the matter distribution is weak at linear scales for
he values of fR0 considered in this work. As a consequence, the
arge scale random fluctuations remain almost the same in the f(R)
nd �CDM simulations up to z = 0. This is another advantage of
onsidering the boost instead of the full power spectrum. However,
e are still limited by the fundamental mode of our simulation box

nd cannot resolve features in the power spectrum that are smaller
han �k ∼ kF 
 0.018h Mpc−1.

.1.3 Sample variance: impact of the number of realizations

s a complementary study to the one presented in the previous
ection, we assess the impact of the number of realizations on
he matter power spectrum boost measurements, i.e. pure sample
ariance errors. In order to do so, we use the set of 30 independent
ealizations for our reference cosmological model F5 and the corre-
ponding �CDM cosmology, run with the SR simulation box (see
ection 3.4). We start by measuring the matter power spectrum for
ach realization of the F5 model as well as the corresponding boosts
ith respect to �CDM. These quantities, along with their means

omputed over the 30 realizations, are shown in the upper panels
f Fig. 6. The lower panels show the standard errors of the means
omputed over a number Nreal = 1, 5, 10 of independent realizations.
hey are divided by the mean over the full set of realizations in order

o obtain a relative standard error.
We recover a similar result as in the last section. There is a large

ancellation of cosmic variance in the matter power spectrum boost
ith respect to the full power spectrum. Indeed, for the boost, the

elative standard error is of the order of O (0.01 per cent) on the
argest scales available, while for the full power spectrum it is of the
rder of O (10 per cent). This is true even with a single realization.
he reasons behind this are the same as explained in the last section.
The cosmic variance cancellation is weaker at small scales. In fact,

ig. 6 shows that for the boost cosmic variance is an overall increasing
unction of k. For our emulator, we have decided to perform Nreal = 5
ealizations for each training model. We can see that this is enough to
eep statistical errors below 1 per cent at the 3σ level at all scales. In
ig. 6, we only show the results at z = 0. However, we have checked

hat the conclusions from this section hold at all redshifts relevant
or our emulator, i.e. for 0 < z < 2.

.2 Emulation errors

n this section, we assess the emulation errors that are purely due to
he GP interpolation between training nodes. For that we make use
f the sliced structure of our experimental design by following the
ame procedure as in Nishimichi et al. (2019). We train the emulator
sing only three slices from the primary SLHD and the 30 refinement
odels. The remaining slice (i.e. 20 cosmological models) is used as
validation sample. The advantage of sampling the parameter space
ith a maximin-distance SLHD is that the testing set of cosmologies

overs efficiently the whole parameter space while minimizing the
verlap with the training points. This way the comparison of the
redictions from the emulator against the measured boosts from the
alidation sample gives a representative estimation of the emulation
ccuracy across the whole parameter space. The results from this test
re presented in Fig. 7. It shows the comparison of the predictions
rom the emulator and the simulation measurements for the 20
MNRAS 527, 7242–7262 (2024)
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Figure 4. Results of the mass resolution convergence test for the matter power spectrum boost in the SR simulation box for different scales, redshifts and f(R)
models. The top left panels shows the resolution error �res as a function of the wavenumber k for three different f(R) models (F4, F5, and F6) and two redshifts
(z = 0 with solid lines and z = 2 with dashed lines). The remaining panels give |�res| as a function of redshift and scale for F4 (top right), F5 (bottom left)
and F6 (bottom right). Overall, the systematic errors of the power spectrum boost are smaller than 3 per cent for all models in the range 0 < z < 2 and k � 7
h Mpc−1.
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osmological models of the validation sample at z = 0. The majority
f models have relative errors that stay under the 0.5 per cent limit at
ll scales. In the worst cases the emulation errors are still smaller than
per cent. We have also computed the root-mean-squared-relative-

rror (RMSRE)

MSRE(k) =
√√√√ 1

Nmodels

Nmodels−1∑
i=0

(
Bemu(k; θi)

Bsim(k; θi)
− 1

)2

, (24)

here Nmodels is the number of validation models, θ i is the cosmo-
ogical parameter vector of the validation model i, Bemu is the boost
redicted by the emulator, and Bsim is the boost measured from the
imulation. The RMSRE, given by the black line in the lower panel
f Fig. 7, is smaller than 0.5 per cent for all values of k. We have
erified that these results remain valid for the 19 redshift nodes of
ur training set. Appendix C presents the same accuracy test at z =
and z = 2. The final version of our emulator is trained using the
NRAS 527, 7242–7262 (2024)
ull set of 110 models, and therefore, we expect the real emulation
rrors to be smaller than this estimation.

This type of comparison is an assessment of the emulation errors
xclusively. To estimate the total error budget of E-MANTIS, it is
mportant to also take into account the accuracy of the training data.
n Section 4.1.1, we have estimated a maximum mass resolution
rror of 3 per cent in the range 0 < z < 2 and k � 7 h Mpc−1. The
ure emulation errors are therefore negligible with respect to the
ystematic errors in the training data. This is made possible by the
arge number of models in our experimental design, and, in particular,
y the refinement strategy. More quantitative details are given in
ppendix B. The large scale errors estimated in Sections 4.1.2 and
.1.3 are smaller than 1 per cent and, as a consequence, they can
e neglected with respect to the mass resolution systematic effects.
ppendix C shows that the redshift interpolation errors are also
egligible. The final accuracy of E-MANTIS is exclusively driven
y the mass resolution errors in the training data. As shown in
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Figure 5. Results of the large-scale convergence test at z = 0 for the F5 model. The VLR box is used as a reference and the measurements from the HR, SR, and
LR boxes are compared to it. The left panel shows the relative difference in the total matter power spectrum. The error of the SR box gets as high as 50 per cent
at the largest scales covered by the emulator. The right panel shows the same test for the matter power spectrum boost. In this case, the large scale error in the
SR box is smaller than 1 per cent even for the first k bin.

Figure 6. Upper panels: Matter power spectrum (left) for our reference cosmological model F5 and the corresponding boost (right) with respect to �CDM for
30 independent realizations (grey lines). The mean over the different realizations is shown as a black dashed line. Lower panels: Relative standard errors of
the means computed over Nreal independent realizations. Cosmic variance induces large scale errors of the order of O (10 per cent) in the full power spectrum,
while reducing to O (0.01 per cent) in the case of the boost. This is true even with a single realization.
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ection 4.1.1, such errors are always smaller than 3 per cent for all
osmological models considered and for 0 < z < 2 and � 7 h Mpc−1.
his is a conservative bound and, in most cases, the resolution errors

emain smaller than 1 per cent.

R ESULTS

.1 Comparison with other predictions

n this section, we compare the output of E-MANTIS to existing
redictions in the literature for the matter power spectrum boost
n f(R) gravity. In Winther et al. (2015), the authors perform a
omparison of different modified gravity simulation codes. They
how that the predicted matter power spectrum boosts in f(R) gravity
grees within 1 per cent, at least up to k � 7h Mpc−1, for three
ifferent N-body simulation codes: ECOSMOG (Li et al. 2012a), MG-
ADGET (Puchwein, Baldi & Springel 2013), and ISIS (Llinares,
ota & Winther 2014). Fig. 8 compares the power spectrum boosts

hey obtain with ECOSMOG with the predictions from E-MANTIS.
or this comparison, we set �m = 0.269 and σ 8 = 0.8, which
re the cosmological parameters used in Winther et al. (2015).
heir simulations have a slightly better resolution than ours. Indeed,

hey evolve the same number of DM particles (5123) in a smaller
imulation box (Lbox = 250 versus 328.125h−1Mpc), giving a
MNRAS 527, 7242–7262 (2024)
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Figure 7. Results of the emulation accuracy test at z = 0. The emulator is
trained using all available models except one slice from the primary SLHD,
which is used as a validation sample. The top panel shows the matter power
spectrum boost predicted by the emulator for each test model (solid lines)
and the measurements from the simulations (dashed lines). The bottom panel
shows the relative differences between the predictions of the emulator and the
simulations. The solid black line gives the corresponding root-mean-square-
relative-error (RMSRE), as defined by equation (24). The dark and light grey
bands mark the 0.5 per cent and 1 per cent accuracy limits, respectively. All
the validation models have an emulation error smaller than 1 per cent, even
for the most extreme ones. The RMSRE is smaller than 0.5 per cent level at
all the scales covered by the emulator.

Figure 8. Comparison of the predicted boost by E-MANTIS (solid lines) with
the ECOSMOG simulation data from Winther et al. (2015) (dashed lines) at
z = 0. The top panel gives the power spectrum boosts and the lower panel
their relative difference with respect to E-MANTIS. The light and dark grey
bands mark the 1 per cent and 3 per cent levels, respectively. The agreement
is better than 1 per cent at all scales available (k � 7h Mpc−1) and for both
models F5 and F6. This comparison serves as a validation of E-MANTIS

against an external simulation run with the same N-body code, which the
authors of Winther et al. (2015) have shown to be in good agreement with
other simulations codes such as MG-GADGET and ISIS.

Figure 9. Comparison with the fitting formula from Winther et al. (2019)
at z = 0, which, like E-MANTIS, is based on N-body simulations run with
ECOSMOG. The top panel shows the predicted power spectrum boosts by E-
MANTIS (solid lines) and the fitting formula (dashed lines) for different values
of fR0 . The bottom panel gives the relative difference of the fitting formula
prediction with respect to E-MANTIS. The light and dark grey bands mark the
1 per cent and 3 per cent levels respectively. For the models F4 and F6 the
agreement is better than 3 per cent at all scales considered. In the case F5
there is a 3 per cent agreement for k � 5 − 6 h Mpc−1 and then the difference
increases up to ∼ 5 per cent. For F4.5, which is not one of the fitting nodes
of Winther et al. (2019), the difference is more important. The fitting formula
interpolates the boost between three values of fR0 , while E-MANTIS is trained
on 110 different cosmological models on a 3D latin hypercube.
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ass resolution of mpart = 8.71 × 109h−1 M� (versus an average
f mpart ∼ 2.3 × 1010h−1 M� for our emulation suite). They use a
maller refinement particle criterion (mref = 8 versus 14) and also
n additional refinement level (lmax = 16 versus 15) for F5. In spite
f these differences, the predictions from E-MANTIS agree within
per cent for both models F5 and F6 and at all available scales (k �
h Mpc−1).
Another available prediction for the matter power spectrum boost

n f(R) gravity is the fitting formula introduced by Winther et al.
2019). The authors perform a fit of the boost using the ELEPHANT

imulations (Cautun et al. 2018). These simulations have been done
ith ECOSMOG and evolve 10243 DM particles in a cubic box of side
box = 1024 h Mpc−1 with a mass resolution of 7.78 × 1010h−1 M�.
he fitting formula is calibrated from three different f(R) models:
fR0

∣∣ = {
10−4, 10−5, 10−6

}
. The other cosmological parameters are

ept fixed. We compare the predicted boost from E-MANTIS to
he fitting formula for the models F4, F5, and F6. The accuracy
f the fitting formula should be the best for these three models,
ince they are the fitting nodes. We also carry a comparison for
4.5 in order to test the interpolation of the fitting formula. We
et �m = 0.281 and σ 8 = 0.82, which are the values used in

inther et al. (2019). Fig. 9 gives the resulting comparison. The
greement between both predictions is at the 3 per cent level at
ll scales for F4 and F6. For F5 the 3 per cent agreement holds
or k � 5–6 h Mpc−1. At smaller scales, the prediction of the
tting formula drops below that of E-MANTIS, up to a difference of

5 per cent. One possible explanation for such a difference could
e that our training simulations have a higher mass resolution than the
LEPHANT simulations. In any case, such differences are well within
he estimated 3 per cent accuracy of E-MANTIS combined with that
f the fitting formula. Indeed, in Winther et al. (2019), the authors
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Figure 10. Comparison with the MGEMU emulator (Ramachandra et al.
2021), based on COLA simulations, at z = 0. The top panel shows the
predicted power spectrum boosts by E-MANTIS (solid lines) and MGEMU

(dashed lines) for different values of fR0 . The bottom panel gives the relative
difference of the MGEMU predictions with respect to E-MANTIS. The light and
dark grey bands mark the 1 per cent and 3 per cent levels, respectively.
The models F6 and F5 agree to the 1 per cent level at all scales considered.
In the case of F4, the agreement is at the 3 per cent level. We restrict the
comparison to scales k ≤ 1h Mpc−1, which is the limit of validity of the
COLA predictions.
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Figure 11. Same as Fig. 10, but at z = 1. We notice that MGEMU under-
estimates the power spectrum boost with respect to E-MANTIS, by up to
∼ 5 per cent for F4 and ∼ 3 per cent for F5. As pointed out in Ramachandra
et al. (2021), the COLA simulations implement an approximate solver for
the MG screening, which produces this effect. As in Fig. 10, we limit the
comparison to the scales covered by MGEMU, i.e. k ≤ 1h Mpc−1.
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ite an accuracy of 1 per cent for k � 1h Mpc−1 and of 5 per cent
or 1 < k < 10h Mpc−1. In the case of F4.5, the difference between
oth predictions is slightly larger. There is a ∼ 3 per cent difference
t intermediate scales. Additionally, the prediction from the fitting
ormula drops by ∼ 8 per cent at k = 10h Mpc−1. Both predictions
re based on simulations run with the same N-body code and using
similar numerical resolution. However, we expect the emulation of

he boost by E-MANTIS to be more accurate than that of the fitting
ormula. Indeed, E-MANTIS is trained on 110 different cosmological
odels on a 3D latin hypercube, while in Winther et al. (2019) they

imply interpolate between three values of fR0 .
We perform a third comparison with the MGEMU emulator intro-

uced in Ramachandra et al. (2021). In this work, the authors build
n emulator for the matter power spectrum boost in f(R) gravity using
Omoving Lagrangian Acceleration (COLA) simulations. We refer

he reader to the aforementioned paper for more specific details. The
omparison at z = 0 between both emulators is given in Fig. 10. We
et set ns = 0.9649 and n = 1 in the COLA emulator to match the
alues used in our training data set. We also use �m = 0.3153 and σ 8

0.8111, which are the best-fitting values from Planck Collaboration
I (2020). We only consider scales k ≤ 1h Mpc−1 since the usage of

he COLA emulator for larger values of k is not recommended by its
uthors. Indeed, the COLA simulations are less accurate than N-body
nes at small scales. Both emulators agree at the 1 per cent level for
he models F5 and F6. For F4, the agreement is at the 3 per cent level.
t is important to keep in mind that the model F4 is at the edge of
he emulated parameter space of both emulators, which might lead
o larger emulation errors in both predictions. The COLA emulator
as a reported accuracy of 5 per cent and, therefore, the differences
ith E-MANTIS are well within the expected error bars. In Fig. 11,
e show the same comparison, but at a redshift of z = 1. It can be

een that MGEMU tends to underestimate the power spectrum boost
ith respect to EMANTIS. The difference reaches the ∼ 3 per cent

evel for F5 and ∼ 5 per cent for F4. In Ramachandra et al. (2021),
he authors explain that the COLA simulations used to train MGEMU

mplement an approximate method to solve for the screening of the
(R) extra field. This produces an underestimation of the boost at
igh redshifts, with respect to N-body simulations, which solve for
he full MG equation of motion.

We perform a last comparison with the FORGE emulator introduced
y Arnold et al. (2022). This emulator is built using cosmological N-
ody simulations run with the modified gravity AREPO code (Arnold,
eo & Li 2019). FORGE emulates the power spectrum boost in f(R)
ravity with respect to HALOFIT (Takahashi et al. 2012) instead of a
-body �CDM prediction. It would be incorrect to directly compare

he outputs of both emulators, since they do not emulate the same base
uantity. The first cosmological model of FORGE [node-0 from table
of Arnold et al. (2022)] is a �CDM model, which we can use to get
�CDM/PHALOFIT. We use this quantity to rescale the boost predicted by
ORGE and compare it to the output of E-MANTIS. In order to minimize
he emulation errors when removing the HALOFIT component from
he FORGE prediction, we set the �CDM parameters to the cosmology
f the FORGE node-0: �m = 0.31315, σ 8 = 0.82172, and h = 0.6737.
ig. 12 shows the comparison between FORGE and E-MANTIS for
ifferent f(R) models at z = 0. For the model F6, there is a 1 per cent
greement at all the emulated scales. However, for models F5 and
4.5, the difference is larger, reaching 3 per cent and 5 per cent,
espectively at intermediate to small scales. The reported accuracy
f FORGE is of the order of 2 per cent for most of the models covered
y it and in particular the ones used in this comparison. Combined
ith the 3 per cent estimated accuracy of E-MANTIS, the total error
udget in this test is of 3.6 per cent. In the case of F4.5, the difference
etween both emulators is larger. The fact that we have used the
ORGE node-0 to remove the HALOFIT component from its prediction
ight introduce its own additional source of errors. However, this

s the best comparison we can perform given the output quantities
f both emulators. Moreover the FORGE emulator does not benefit
rom the cancellation of numerical systematics that is obtained by
onsidering the boost instead of the power spectrum. Additionally,
he F4.5 models is at the edge of the FORGE emulated space, which

ight lead to increased emulation errors. Furthermore, there might
e some systematic difference between the N-body predictions of
MNRAS 527, 7242–7262 (2024)
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Figure 12. Comparison with the FORGE emulator (Arnold et al. 2022) at z

= 0. The top panel shows the power spectrum boost for different f(R) as
predicted by FORGE (dashed lines) and E-MANTIS (solid lines). The bottom
plot gives the relative difference of the FORGE prediction with respect to E-
MANTIS. The light and dark grey bands mark the 1 per cent and 3 per cent
levels, respectively. For F6, there is a 1 per cent level agreement at all scales
considered. In the case of F5 and F4.5, there is a 3 per cent and 5 per cent
difference respectively at intermediate to small scales. The FORGE predictions
have been corrected to compensate for the effect of HALOFIT, since FORGE

predicts Pf (R)/PHALOFIT instead of the boost Pf(R)/P�CDM, which is the robust
quantity of interest in this article (see Section 3.2.1).
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Table 4. Table summarizing the truth values and the flat prior ranges used in
the MCMC of Section 5.2 for each parameter. The best-fitting values found
by the MCMC, with their 1-σ confidence levels, are also given.

Parameter True value Prior range Best fit

− log
∣
∣fR0

∣
∣ 5 [4, 7] 5.04+0.11

−0.17
�m 0.3071 [0.2365, 0.3941] 0.307+0.013

−0.016
σ 8 0.8224 [0.73, 0.9] 0.8210 ± 0.0089
ns 0.96641 [0.92, 1.01] 0.965 ± 0.024
h 0.6803 [0.6, 0.8] 0.706 ± 0.047
�b 0.048446 [0.04, 0.06] 0.0513+0.0072

−0.0038
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COSMOG and AREPO that are not accounted for in the estimated
ccuracy of the emulators. To conclude, the two emulators are
omplementary as they are sensitive to different kind of systematics.

more in depth study would require a detailed comparison of both
imulation codes, which is out of the scope of this work.

Overall there is a good agreement between the predictions of E-
ANTIS and other existing predictions from the literature.

.2 Example of application

n this section, we present a toy example of how to use the E-MANTIS

mulator. We aim at recovering the cosmological parameters from
f(R)CDM simulation by running a Markov Chain Monte Carlo

MCMC) on the measured matter power spectrum.
The emulator presented in this work is able to compute the boost

f the matter power spectrum B(k) = Pf(R)/P�CDM. In order to get
he full power spectrum in f(R) gravity, such quantity needs to be
ombined with a non-linear �CDM prediction. For the purpose
f this section, we use the BACCO emulator (Angulo et al. 2021).
ther �CDM emulators such as COSMICEMU (Moran et al. 2022) or

UCLIDEMULATOR2 (Euclid Collaboration 2021) would also be valid
lternatives.

In order to run the MCMC, we need simulation data to be
sed as the data vector. The volume and mass resolution of the
imulations presented throughout this work have been designed to
redict the matter power spectrum boost with a few per cent errors.
owever, they are not able to estimate the full power spectrum with

he same level of accuracy. Fig. 6 shows that reducing statistical
rrors on the full power spectrum under the 1 per cent level at
cales 0.1h Mpc−1 < k < 1h Mpc−1 would require performing at
east O(100) f(R) realizations with the same box size. Alternatively,
n accurate modelling of the non-linear covariance at those scales
ould avoid getting biased constraints even in the presence of
NRAS 527, 7242–7262 (2024)
ignificant errors in the data vector. However, computing a fully non-
inear covariance requires an even higher number of simulations,
t least of the order of O

(
103 − 104

)
(Blot et al. 2015). Such a

umerical effort goes beyond the scope of this section. We resort to
uilding a composite power spectrum in f(R) gravity using the same
oost strategy as in the construction of our emulator. We compute
he full power spectrum in �CDM using a series of 384 independent
ealizations, each evolving 5123 dark matter particles in a simulation
olume of

(
328.125 h−1Mpc

)3
. This set of simulations is part of

n ongoing simulation series which will be presented in a future
ork. The values of the cosmological parameters used for these

imulations are given in Table 4. These simulations are run with
he same numerical parameters previously described (see Table 2).
dditionally, we perform five realizations with the same volume and
ass resolution for the F5 model in order to compute the power

pectrum boost. Fig. 6 shows that the statistical errors on the power
pectrum boost with five realizations is much smaller than 1 per cent.
e build a full power spectrum for F5 by multiplying the �CDM

ower spectrum by the F5 boost. For simplicity, we use the same
inning in k as in E-MANTIS and described in Section 3.2.4. Such
rocedure gives us a full power spectrum in f(R)CDM cosmology
ith per cent level accuracy, while minimizing the numerical effort.
We assume a linear Gaussian covariance for the power spectrum

ata. Additionally, it is important to also take into account the
rrors from the emulator predictions, which at scales small enough
ominate over the Gaussian covariance. The authors of Angulo
t al. (2021) estimate the BACCO emulator to be accurate at the
per cent level in the case of �CDM. According to the convergence

tudies presented in Section 4, we consider a 3 per cent error on
he power spectrum boost predicted by E-MANTIS. The total relative
ystematic error introduced by the emulators has therefore a value of
sys = 0.036, which we add quadratically to the diagonal Gaussian
ovariance. The final covariance between two modes k1 and k2 takes
he form

ov(k1, k2) =
[

2

Nk1

+ σ 2
sys

]
P 2(k1)δk1k2 , (25)

here Nki
= k2

i �kiV /(2π2) is the number of independent Gaussian
ariables in the bin centred on ki and of width �ki, V is the simulation
olume and δk1k2 is Kronecker delta. The first term inside the brackets
orresponds to the linear Gaussian contribution [see for example
coccimarro, Zaldarriaga & Hui (1999)].
We combine the binned matter power spectrum data described

arlier, the predictions from the emulators and the covariance from
quation (25) into a Gaussian likelihood function. We assume
at priors for the parameters

{− log
∣∣fR0

∣∣, �m, σ8, ns, h, �b

}
. The

ariations we explore for each parameter correspond to the widest
ange allowed by the intersection of E-MANTIS and BACCO and are
iven in Table 4. We use the Python package EMCEE (Foreman-
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Figure 13. Marginalized 1D and 2D posterior distributions obtained from the MCMC described in Section 5.2 for the six cosmological parameters{− log
∣
∣fR0

∣
∣, �m, σ8, ns , h, �b

}
. The dark and light contours give the 1-σ and 2-σ confidence levels, respectively. The fiducial values for each parameters,

marked by the black dotted lines, always lay within the 1-σ contours. The matter power spectrum P(k) is obtained from simulation snapshots at z = 0.5, 1, 1.5,
while we use E-MANTIS for the predictions of the boost combined with BACCO for the �CDM predictions.
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ackey et al. 2013) to run the MCMC. We employ the ‘stretch
ove’ sampling method from Goodman & Weare (2010), which is

he default algorithm used by EMCEE.
Our initial tests show that when using a single redshift the posterior

istribution exhibits small multimodal features. These are due to the
egeneracy between the parameters fR0 , �m, and σ 8. In order to
reak such degeneracies, we combine data from multiple redshifts
y assuming that the data sets at different redshifts are independent
rom each other. E-MANTIS is able to make predictions up to z = 2.
owever, BACCO is limited to z < 1.5. In practice, we combine the
atter power spectra from z = 0.5, 1, and 1.5 into a single data vector
nd repeat the covariance from equation (25) for each redshift.

We run an MCMC with 256 walkers or independent chains and
round ∼100 000 steps for each one of them, which took ∼10 h
o complete on a single thread of a laptop 11th Gen Intel Core
7-1165G7 @ 2.80Ghz cpu. The resulting posterior distribution of
he cosmological parameters is shown in Fig. 13. The true values
or each parameter, marked with the dotted black lines, always lay
ithin the 1-σ confidence contours (see also Table 4). This simple

oy use case illustrates how to use the boost predicted by E-MANTIS
MNRAS 527, 7242–7262 (2024)
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n combination with an independent �CDM prediction. It serves as
n additional cross-validation of the newly built emulator.

C O N C L U S I O N S

n this work, we present a new emulator, named E-MANTIS, that
redicts the matter power spectrum boost in f(R) gravity with
espect to �CDM, B(k) = Pf(R)/P�CDM. We run N-body cosmological
imulations with the modified gravity code ECOSMOG in order to
redict such quantity for different cosmological models. Building an
mulator for the boost instead of the raw power spectrum presents
everal advantages, which we summarize here.

Section 3.2.2 shows that the power spectrum boost mainly depends
n only three cosmological parameters: fR0 , �m, and σ 8. Indeed,
he variation of B(k) with h, ns, and �b is smaller than 1 per cent
p to k = 10h Mpc−1, even for variations of these parameters of
25 per cent around their best-fitting values from Planck Collabo-

ation VI (2020). In Appendix A, we have checked that simultaneous
ariations of those parameters have an effect which remains smaller
han 2 − 3 per cent in the worst cases, mostly around the edges of
he parameter space. This error is less than the maximum systematic
rror in our training data. Therefore, we can neglect the influence of
s, h, and �b on the boost when building the emulator with a few per
ent accuracy. We then only need to sample a 3D parameter space
ith N-body simulations instead of a 6D one. As a consequence, the

equired number of simulations to reach a given emulation accuracy
s reduced.

Section 4.1 shows that the boost is less affected by statistical and
ystematic errors than the raw power spectrum. Indeed, there is a very
arge cancellation of cosmic variance and large scale errors. This is
ue to the fact that the f(R) and �CDM simulations are evolved
rom the same initial conditions and that f(R) gravity has a weak
ffect at large scales. The same kind of cancellation happens with
he systematic errors at small scales due to the finite mass resolution
f the simulations. In the end, we require less accurate simulations to
esolve the boost to a given precision that what would be needed
or the raw power spectrum. We find that with our simulations,
hich cover an effective volume of (560 h−1Mpc)3 with a particle
ass resolution of mpart ∼ 2 × 1010h−1 M�, we are able to compute

he power spectrum boost with an accuracy better than 3 per cent
or 0.03 h Mpc−1 < k < 7 h Mpc−1 and 0 < z < 2. In practice,
s shown in Fig. 4, the systematic error on the power spectrum
oost measurement depends on the value of fR0 , redshift and scale.
owever, the 3 per cent estimation is a conservative value for most
odels, scales, and redshifts. Even though in most cases the actual

ccuracy is better than 1 per cent.
We sample the 3D cosmological parameter space

{
fR0 , �m, σ8

}
ith 80 models selected from a SLHD using the method introduced
y Ba, Myers & Brenneman (2015). We also sample an additional
0 models in the regions of the parameter space where the emulation
rrors are the highest. For each of the 110 cosmological models
e run five independent realizations both in f(R) gravity and

he corresponding �CDM cosmology. From this training data we
uild an emulator using a GP regression. Section 4.2, along with
ppendix C, shows that the average emulation errors are smaller than
.5 per cent for all scales and redshifts. The accuracy of E-MANTIS is
herefore dominated by the systematic errors in the training data.

Overall, building an emulator for the boost instead of the raw
ower spectrum greatly reduces our computational needs. This
s particularly relevant for f(R) simulations, since they are more
ime consuming than �CDM ones. Indeed, we find that with our
NRAS 527, 7242–7262 (2024)
pecifications a f(R) simulation is between two to ten times slower
han a �CDM one, depending on the value of fR0 .

In Section 5.1, we have compared the predictions of E-MANTIS to
ther existing predictions for the matter power spectrum boost in the
iterature. First, we have considered the N-body simulations results
rom Winther et al. (2015), where they compare the boost predicted
y different state-of-the-art modified gravity N-body codes. This
omparison serves as a validation, and shows that the predictions of
-MANTIS are in good agreement with the outputs of ECOSMOG, ISIS,
nd MG-GAGDET. Then, we have compared E-MANTIS to the fitting
ormula from Winther et al. (2019), which is calibrated on N-body
imulations run with the same code and using a similar resolution.
e have seen that there is a good agreement for F4, F5, and F6, which

re the models the fitting formula interpolates from. The E-MANTIS

mulator improves upon the predictions of this fitting formula by
xpanding the interpolation to the parameters �m and σ 8 and by
sing 110 models (instead of 3) to emulate the boost.
We have also compared our predictions to the MGEMU emulator

ntroduced in Ramachandra et al. (2021), which is based on COLA
imulations. MGEMU is able to give predictions taking into account
ore cosmological parameters, such as ns and the modified gravity

arameter n. However, the range of validity of their predictions is
estricted to scales k ≤ 1h Mpc−1, since COLA simulations are less
ccurate than N-body. The overall agreement is good at z = 0 and
or those scales. Additionally, we have seen in our comparison that
GEMU tends to underestimate the boost at higher redshifts. The

uthors of Ramachandra et al. (2021) explain that this is due to
he approximate implementation of the screening mechanism in the
OLA simulations. This effect can be larger than the error induced
y neglecting ns alone. Therefore, E-MANTIS can give more accurate
redictions in the case of n = 1 even though the effect of ns is not
aken into account.

Finally, we have performed a comparison with the FORGE emulator
resented in Arnold et al. (2022). To date, this is the only emulator
or the matter power spectrum boost in f(R) gravity based on N-body
imulations. However, they use a different N-body code, the modified
ravity version of AREPO (Arnold, Leo & Li 2019). They consider a
lightly larger parameter space than E-MANTIS, since they also include
he parameter h. However, we have shown in Section 3.2.2, that the
argest error comes from neglecting ns. Another difference, is that
-MANTIS emulates the boost with respect to a �CDM simulation,
hich we have shown in Section 4.1 allows for a large cancellation of

ystematic and statistical errors. On the other side, FORGE emulates
he boost with respect to HALOFIT and therefore does not benefit from
his effect. Our comparison shows a good agreement between both
mulators for F6. However, there seems to be a slight disagreement
or larger values of the fR0 parameter, which is not expected given the
mulation errors of both emulators. Such difference could come from
he usage of HALOFIT as a reference which makes the comparison
ifficult, an underestimate of the error bars in one of the emulators,
r a systematic difference between ECOSMOG and AREPO [which was
ot included in the comparison of Winther et al. (2015)]. A more
etailed investigation would be required to solve this issue. Future
eneration surveys will likely require running their analyses using
omplementary theoretical predictions, in order to avoid getting
iased cosmological constraints. For this reason, it is important that
everal emulators based on different numerical codes, such as FORGE

nd E-MANTIS, are available to the community.
In Section 5.2, we have used E-MANTIS to recover the cosmological

arameters of a numerical simulation by running an MCMC on its
atter power spectrum. This simple toy example illustrates how

o combine the boost predicted by E-MANTIS with an independent
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CDM prediction in order to get the full matter power spectrum
rediction in f(R)CDM cosmology.
In this work we have ignored the effect of baryonic physics on the
atter distribution. Its impact on the matter power spectrum boost in

(R) gravity is non-negligible for scales k � 2 h Mpc−1 (Arnold, Leo
Li 2019). Because of this, the E-MANTIS predictions should only be

sed on their own for larger scales. In order to get accurate predictions
or smaller scales, some correction taking into account baryonic
eedback is required. Currently, there are no available emulators
or this type of correction in f(R) gravity. However, Arnold, Leo

Li (2019) has shown that the full physics f(R) power spectrum
oost can be recovered by applying a GR baryonic correction to the
ark matter only prediction. Therefore, the E-MANTIS boost can be
ombined with a �CDM baryonic emulator, such as BCEMU (Giri &
chneider 2021), in order to get accurate predictions at scales smaller

han k � 2 h Mpc−1. Alternatively, if a baryonic correction emulator
n f(R) gravity is developed in the near future, the non-linear dark
atter only boost predicted by E-MANTIS (or another equivalent tool)
ill still be required in order to get the full matter power spectrum.
or this reasons, we believe that the emulator presented in this work
ould be a useful tool in order to constrain f(R) gravity with the
ext-generation of weak lensing surveys, such as LSST and Euclid.
In the future, we plan to extend E-MANTIS to other observables,

uch as dark matter halo statistics and profiles. We also plan to
xtend the current parameter space and cover alternative dark energy
odels.

C K N OW L E D G E M E N T S

his project was provided with computer and storage resources
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Stücker J., 2021, MNRAS, 507, 5869
rnold C., Leo M., Li B., 2019, Nat. Astron., 3, 945
rnold C., Li B., Giblin B., Harnois-Déraps J., Cai Y.-C., 2022, MNRAS,
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Figure A1. Effect of a simultaneous variation of the parameters ns and h on
the matter power spectrum boost. Both parameters are varied by +25 per cent
and −25 per cent at the same time around the reference model F5. The top
panel shows the boosts and the bottom panel the relative difference with
respect to F5. The effect on the boost is smaller than 1 per cent up to
k ≤ 2h Mpc−1, and reaches ∼ 2 per cent at k = 7 h Mpc−1. We see that
with respect to the results shown in Fig. 1, the individual effects of ns and h
mostly add up linearly.

Figure A2. Error made by neglecting the effect of ns and h for some selected
values of the main E-MANTIS parameters different than the reference F5. The
maximum error is around ∼ 1.5 per cent, while in most cases it stays smaller
than 1 per cent.
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PPENDIX A : IMPAC T O F VARYING
U LT I P L E C O S M O L O G I C A L PA R A M E T E R S
N THE MATTER POWER SPECTRU M BOO ST

n Section 3.2.2, we have shown that the individual effect of the
arameters ns, h, and �b on the matter power spectrum boost, around
he reference model F5, is smaller than 1 per cent. Because of this,
e have decided to neglect the effect of those parameters when
uilding our emulator. We then only need to interpolate in a 3D
pace instead of a 6D one, which reduces the number of training
imulations required to reach a certain emulation accuracy level.
owever, simultaneous variations of multiple of those parameters
ight produce a non-negligible effect. Additionally, the effect of

hose parameters in other regions of the E-MANTIS parameter space
ight also be stronger. Indeed, in our study of Section 3.2.2, we have

nly considered variations around the reference model F5, which is
laced towards the centre of the emulation parameter space.
Probing all possible combinations of cosmological parameters

ould effectively require building an emulator in a 6D parameter
pace. This would be computationally expensive, specially given
he cost of running f(R) gravity simulations. Instead, we extend the
osmo simulation suite with a few selected models in order to get
n estimation of the error that E-MANTIS makes by neglecting the
ffect of ns, h, and �b. All the additional simulations discussed in
his appendix are run with the same characteristics as in the cosmo
uite, except that we use one single random realization instead of
ve.
First, we study the impact of varying two of the neglected

arameters simultaneously around the reference cosmological model
5. According to Fig. 1, the two neglected parameters with the largest

mpact are ns and h. We run two simulations, which vary ns and h by
25 per cent and −25 per cent, respectively. Fig. A1 shows that the

ffects of both parameters mostly add up linearly (see Fig. 1). The
rror made by neglecting both parameters is smaller than 1 per cent
or k ≤ 2h Mpc−1 and reaches ∼ 2 per cent at k = 7h Mpc−1. We
tress that this is a worst case scenario, since we have varied both
arameters by extreme values. Fig. 1 shows that the impact of �b

s much smaller than 1 per cent at all scales considered. Therefore,
e do not expect these results to significantly change when �b takes
ifferent values.
We now assess the error made by individually neglecting the

arameters ns and h around other values of the main E-MANTIS

arameters than the reference model F5. We are interested in some
orst case scenarios. For instance we want to estimate the error
ade by E-MANTIS, when neglecting the individual impact of ns and
around the edges of the parameter space in σ 8 and �m. In order

o do so, we run simulations by varying one of the main parameters
s well as one of the neglected ones. Fig. A2 shows the relative
rror made by neglecting ns or h for some extreme values of σ 8

nd �m. We also perform the same study around F6, since it is a
odel of observational interest for future surveys. One can see that
NRAS 527, 7242–7262 (2024)
he relative error is smaller than 1 per cent in most cases and reaches
he ∼ 1.5 per cent level in the worst considered case. This should be
ompared to Fig. 1: by changing the reference model the maximum
rrors have slightly increased from 1 per cent to 1.5 per cent.

By considering both results from Figs A1 and A2, we find that
he maximum error on the boost made by neglecting the parameters
s, h, and �b is 2 per cent. An extrapolation to even more complex
ombinations suggests a possible upper limit of around 3 per cent
if some of the deviations add up). To conclude, the maximum errors
re expected at the 2–3 per cent level. They mostly happen around
he edges of the parameter space. In most of the cases, the error is
owever smaller than 1 per cent.
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P P E N D I X B: IN F L U E N C E O F T H E N U M B E R
F R E A L I Z AT I O N S A N D T H E R E F I N E M E N T
O D E L S O N T H E EM U L AT I O N AC C U R AC Y

n this appendix, we show how both the number of realizations and
he refinement models impact the final accuracy of the emulator. We
erform the same kind of test as in Section 4.2. One slice of the
rimary SLHD is left out of the training models to be used as a
alidation sample. The emulator is built with different training data
et configurations. Then, for each configuration, the predictions of
he emulator are compared to the simulations measurements from the
alidation models. We consider four different configurations, where
he emulator is trained using:

(i) 60 models from the primary SLHD and one realization per
osmological model,

(ii) 60 models from the primary SLHD, the 30 refinement models
nd one realization per cosmological mode,
igure B1. Emulation errors at z = 0 for different training data set configuration
odels) and using a single realization per cosmological model. Top right: the 30 re

s trained without refinement models but using five independent realizations per c
dded to the training data set. In all the cases, the remaining slice from the primary S
rror for one of the 20 validation models. The black line give the RMSRE, as defined
ccuracy limits. The 30 refinement models as well as the five realizations per cosmo
ll validation models and scales. In such a case, the RMSRE is well below the 0.5 p
(iii) 60 models from the primary SLHD and five independent
ealizations per cosmological model,

(iv) 60 models from the primary SLHD, the 30 refinement models
nd five independent realizations per cosmological model.

The results of this test at z = 0 are given in Fig. B1. The refinement
odels as well as the five independent realizations per cosmological
odel make it possible to get an average emulation error smaller than

.5 per cent, and therefore negligible with respect to the systematic
rrors in the training data as estimated in Section 4.1.1. Even for the
orst validation models, the emulation errors remains well below 1
er cent at all relevant scales. As expected, the signal is also smoother
ith five realizations than with a single one.

P P E N D I X C : EM U L AT I O N AC C U R AC Y AT
I FFERENT REDSHI FTS

ur f(R) matter power spectrum boost emulator is built using training
ata from 19 redshift nodes (see Section 3.3). In Section 4.2 we have
MNRAS 527, 7242–7262 (2024)

s. Top left: the emulator is trained on three slices of the primary SLHD (60
finement models are added to the training data set. Botton left: the emulator
osmological model. Bottom right: the 30 refinement models are once again
LHD is used as a validation sample. Each coloured line shows the emulation
by equation (24). The dark and light grey bands mark the 0.5 and 1 per cent

logical model are needed to get emulation errors smaller than 1 per cent for
er cent level at all scales.
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Figure C1. Results of the emulation accuracy test for the emulator at z = 1 (left) and z = 2 (right). The emulator is trained using the refinement models and
three slices from the primary SLHD. The remaining slice is used as a validation set. The top panels give the predicted boost by the emulator for each test model
(solid lines). The dashed lines are measurements from the simulations. The bottom panels give the relative emulation errors for each validation model. The solid
black line corresponds to the RMSRE as defined by equation (24). The dark and light grey bands give the 0.5 per cent and 1 per cent levels, respectively. At both
redshifts the emulation errors are smaller than 0.5 per cent for most models and scales. Only for a few extreme models the emulation errors reache the 1 per cent
level at the smallest scales. The RMSRE is always smaller than 0.5 per cent.

Figure C2. Redshift interpolation accuracy test. The emulator is trained
using only 10 redshift nodes. The remaining nine redshift nodes are used as
a validation sample. For each validation redshift we compare the predictions
from the emulator to the simulation measurements for the 80 models of the
primary SLHD. We give here the RMSRE, as defined by equation (C1),
which for most redshifts is smaller than 0.3 per cent at all scales. The redshift
interpolation errors in the final emulator, which uses twice as many redshift
nodes as in this test, are expected to be smaller.
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E-MANTIS is also able to perform predictions for redshift values
outside the training nodes. We proceed by building an independent
emulator at each redshift node. Then, for any arbitrary redshift, we
perform a linear interpolation of the predicted boost between the two
neighbouring redshift nodes. In order to estimate the contribution to
the emulation error budget of such a procedure, we train our emulator
using the full set of available cosmological modes but only 10 redshift
nodes. The remaining nodes are used as a validation sample. On these
nine validation nodes, we compare the prediction of the emulator to
the simulation measurements for the 80 models of the primary SLHD.
We exclude the refinement models from this comparison in order to
have an homogeneous distribution of models across the cosmological
parameter space. We compute the corresponding RMSRE at each
validation redshift, defined as

RMSRE(k, z) =
√√√√ 1

Nmodels

Nmodels−1∑
i=0

(
Bemu(k, z; θi)

Bsim(k, z; θi)
− 1

)2

, (C1)

where Nmodels is the number of models used in the comparison, θ i is
the cosmological parameter vector of model i, Bemu is the power
spectrum boost predicted by the emulator and Bsim is the boost
measured from the simulations. The obtained RMSREs are shown in
Fig. C2. For most redshifts the RMSRE is smaller than 0.3 per cent
at all scales. Only for z = 1.74 the RMSRE reaches the 0.5 per cent
level. The final emulator has twice as many redshift nodes as in
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stimated the emulation errors at z = 0 by splitting the simulation
ata into a training and validation set. Fig. C1 gives the same results
ut at z = 1 and z = 2. The conclusions drawn for z = 0 are still
alid at those redshifts. More precisely, the emulation errors for the
0 validation models only reach the 1 per cent level for the most
xtreme models and the RMSRE, defined in equation (24), remains
nder 0.5 per cent at all scales. We have verified that these results
old for the 19 redshift nodes of E-MANTIS between 0 < z < 2.

Published by Oxford University Press on behalf of Royal Astronomical Society. Th
(http://creativecommons.org/licenses/by/4.0/), which permits unrestric
his test. We therefore expect the real redshift interpolation errors to
e smaller that the present estimation. In any case, these errors are
egligible with respect to the mass resolution errors, which can reach
he 3 per cent level.

his paper has been typeset from a TEX/LATEX file prepared by the author.

© The Author(s) 2023.
pen Access article distributed under the terms of the Creative Commons Attribution License

e, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 F(R) GRAVITY
	3 METHODS
	4 NUMERICAL CONVERGENCE STUDIES
	5 RESULTS
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: IMPACT OF VARYING MULTIPLE COSMOLOGICAL PARAMETERS ON THE MATTER POWER SPECTRUM BOOST
	APPENDIX B: INFLUENCE OF THE NUMBER OF REALIZATIONS AND THE REFINEMENT MODELS ON THE EMULATION ACCURACY
	APPENDIX C: EMULATION ACCURACY AT DIFFERENT REDSHIFTS

