6 research outputs found

    Seismic stratigraphy and sediment cores reveal lake-level fluctuations in Lake Iznik (NW Turkey) over the past ∼70 ka

    Get PDF
    Our study aims to understand the palaeohydrological history of Lake Iznik and unravel the complex interplay between climatic, tectonic, and environmental factors that have shaped this Turkish basin. Through the analysis of seismic stratigraphy and sediment cores, we reveal a significant lowstand, indicating a lake level 60 m lower than today at ∼70 ka BP. Subsequently, a major phase of stepwise transgression is evidenced by 13 buried palaeoshorelines between ∼70 and 45 ka BP. From 45 to ∼10 ka cal BP, strong currents controlled the sedimentation in the lake, as evidenced by the occurrence of contourite drifts. Between ∼14 and 10 ka cal. BP, a major lowstand indicating a drier climate interrupted the current-controlled sedimentation regime. From ∼10 ka cal. BP, the subsequent increase in lake level occurred at the same time as the reconnection between the Mediterranean and Black seas. Archaeological evidence, including submerged structures of a basilica, establishes a link between lake-level changes and human settlement during the last millennium. The level of Lake Iznik has since continued to fluctuate due to climate change, tectonic events, and human activity

    The interrelatedness of cognitive abilities in very preterm and full‐term born children at 5.5 years of age : a psychometric network analysis approach

    Get PDF
    Background Very preterm (VP) birth is associated with a considerable risk for cognitive impairment, putting children at a disadvantage in academic and everyday life. Despite lower cognitive ability on the group level, there are large individual differences among VP born children. Contemporary theories define intelligence as a network of reciprocally connected cognitive abilities. Therefore, intelligence was studied as a network of interrelated abilities to provide insight into interindividual differences. We described and compared the network of cognitive abilities, including strength of interrelations between and the relative importance of abilities, of VP and full-term (FT) born children and VP children with below-average and average-high intelligence at 5.5 years. Methods A total of 2,253 VP children from the EPIPAGE-2 cohort and 578 FT controls who participated in the 5.5-year-follow-up were eligible for inclusion. The WPPSI-IV was used to measure verbal comprehension, visuospatial abilities, fluid reasoning, working memory, and processing speed. Psychometric network analysis was applied to analyse the data. Results Cognitive abilities were densely and positively interconnected in all networks, but the strength of connections differed between networks. The cognitive network of VP children was more strongly interconnected than that of FT children. Furthermore, VP children with below average IQ had a more strongly connected network than VP children with average-high IQ. Contrary to our expectations, working memory had the least central role in all networks. Conclusions In line with the ability differentiation hypothesis, children with higher levels of cognitive ability had a less interconnected and more specialised cognitive structure. Composite intelligence scores may therefore mask domain-specific deficits, particularly in children at risk for cognitive impairments (e.g., VP born children), even when general intelligence is unimpaired. In children with strongly and densely connected networks, domain-specific deficits may have a larger overall impact, resulting in lower intelligence levels

    X-38 NASA/DLR/ESA-Dassault Aviation Integrated Aerodynamic and Aerothermodynamic Activities

    No full text
    The characterization of the aeroshape selected for the X-38 (Crew Return Vehicle (CRV) demonstrator) is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and the European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV

    X-38: A Testbed for the CEVCATS-N Code

    No full text
    The paper focuses on today possibility of using a Navier-Stokes code as design/verification tool for the hypersonic regime, on a real engineering environment. Within the frame of Dassault Aviation work for NASA X-38 demonstrator, DLR has performed more than two hundered CFD solutions, Euler and Navier-Stokes, demonstrating that the DLR computer code CEVCATS-N satisfies all criterion to be considered a reliable tool. That is, fulfilling concepts like accuracy, efficiency, flexibility and robustness for a wide spectrum of geometrical shapes and flow conditions

    Impact of warmer climate periods on flood hazard in the European Alps

    No full text
    International audienceFlooding is a pervasive natural hazard—costly in both human and economic terms—and climate change will probably exacerbate risks around the world. Mountainous areas, such as the densely populated European Alps, are of particular concern as topography and atmospheric conditions can result in large and sudden floods. In addition, the Alps are experiencing a high warming rate, which is probably leading to more heavy rainfall events. Here, we compile palaeoflood records to test the still uncertain impact these climatic trends might have on flood frequency and magnitude in the European Alps. We demonstrate that a warming of 0.5-1.2 °C, whether naturally or anthropogenically forced, led to a 25-50% decrease in the frequency of large (≥10 yr return period) floods. This decreasing trend is not conclusive in records covering less than 200 years but persistent in those ranging from 200 to 9,000 years. By contrast, extreme (>100 yr) floods may increase with a similar degree of warming in certain small alpine catchments impacted by local intensification of extreme rainfall. Our results show how long, continuous palaeoflood records can be used to disentangle complex climate-flooding relationships and assist in improving risk assessment and management at a regional scale
    corecore