528 research outputs found

    The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    Full text link
    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.Comment: 41 pages, 6 figures; submitted to the Astronomical Journa

    Flow on the Internet: a longitudinal study of Internet addiction symptoms during adolescence

    Get PDF
    Internet Addiction (IA) constitutes an excessive Internet use behavior with a significant impact on the user’s well-being. Online flow describes the users’ level of being absorbed by their online activity. The present study investigated age-related, gender, and flow effects on IA in adolescence. The sample comprised 648 adolescents who were assessed twice at age 16 and 18 years. IA was assessed using the Internet Addiction Test and online flow was assessed using the Online Flow Questionnaire. A three-level hierarchical model estimated age-related, gender, and online flow effects on IA symptoms and controlled for clustered random effects. IA symptoms decreased over time (for both genders) with a slower rate in males. Online flow was associated with IA symptoms and this remained consistent over time. Findings expand upon the available literature suggesting that IA symptoms could function as a development-related manifestation at the age of 16 years, while IA-related gender differences gradually increase between 16 and 18 years. Finally, the association between online flow and IA symptoms remained stable independent of age-related effects. The study highlights individual differences and provides directions for more targeted prevention and intervention initiatives for IA

    ALMA Observations of a Gap and a Ring in the Protoplanetary Disk around TW Hya

    Get PDF
    We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ∼30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ∼15 au. In addition, the 13CO and C18O J=3-2 lines show a decrement in CO line emission throughout the disk, down to ∼10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2{M}{{Neptune}}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice

    A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya

    Get PDF
    We report ∼3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (∼25%-50%) at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The central hole with a radius of ∼3 au was also marginally resolved. The most remarkable finding is that the spectral index α(R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity β(R) is ∼1.7 at the 22 au gap and decreases toward the disk center to ∼0. The most prominent gap at 22 au could be caused by the gravitational interaction between the disk and an unseen planet with a mass of ≲1.5 M Neptune, although other origins may be possible. The planet-induced gap is supported by the fact that β(R) is enhanced at the 22 au gap, indicating a deficit of ∼millimeter-sized grains within the gap due to dust filtration by a planet

    Measurement invariance of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF) between Australia, the USA, and the UK

    Get PDF
    The Internet Gaming Disorder Scale-Short-Form (IGDS9-SF) is widely used to assess Internet Gaming Disorder behaviors. Investigating cultural limitations and implications in its applicability is imperative. One way to evaluate the cross-cultural feasibility of the measure is through measurement invariance analysis. The present study used Multigroup Confirmatory Factor Analysis (MGCFA) to examine the IGDS9-SF measurement invariance across gamers from Australia, the United States of America (USA), and the United Kingdom (UK). To accomplish this, 171 Australian, 463 USA, and 281 UK gamers completed the IGDS9-SF. Although results supported the one-factor structure of the IGD construct, they indicated cross-country variations in the strength of the relationships between the indicators and their respective factor (i.e., non-invariant loadings of items 1, 2, 5), and that the same scores may not always indicate the same level of IGD severity across the three groups (i.e., non-invariant intercepts for items 1, 5, 7, 9)

    Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses

    Full text link
    1 Plant species diversity drops when fertilizer is added or productivity increases. To explain this, the total competition hypothesis predicts that competition above ground and below ground both become more important, leading to more competitive exclusion, whereas the light competition hypothesis predicts that a shift from below-ground to above-ground competition has a similar effect. The density hypothesis predicts that more above-ground competition leads to mortality of small individuals of all species, and thus a random loss of species from plots. 2 Fertilizer was added to old field plots to manipulate both below-ground and above-ground resources, while shadecloth was used to manipulate above-ground resources alone in tests of these hypotheses. 3 Fertilizer decreased both ramet density and species diversity, and the effect remained significant when density was added as a covariate. Density effects explained only a small part of the drop in diversity with fertilizer. 4 Shadecloth and fertilizer reduced light by the same amount, but only fertilizer reduced diversity. Light alone did not control diversity, as the light competition hypothesis would have predicted, but the combination of above-ground and below-ground competition caused competitive exclusion, consistent with the total competition hypothesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75695/1/j.1365-2745.2001.00662.x.pd

    Do Lions Panthera leo Actively Select Prey or Do Prey Preferences Simply Reflect Chance Responses via Evolutionary Adaptations to Optimal Foraging?

    Get PDF
    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success
    • …
    corecore