15 research outputs found

    Diurnal tracking of anthropogenic CO_2 emissions in the Los Angeles basin megacity during spring 2010

    Get PDF
    Attributing observed CO_2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO_2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May–15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO_2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model – Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO_2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO_2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO_2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity

    Physical and chemical properties of the regional mixed layer of Mexico's Megapolis

    No full text
    The concentration of gases and aerosol particles have been measured at the mountain site of Altzomoni, 4010 m in altitude, located 60 km southeast of Mexico City, 50 km east of Puebla and 70 km northeast of Cuernavaca. The objective of this study was to evaluate the properties of gases and particles in the Regional Mixed Layer (RML) of Mexico's Megapolis. Altzomoni is generally above the RML from late evening until late morning at which time the arrival of the RML is marked by increasing concentrations of CO and aerosol particles that reach their maxima in mid-afternoon. The average diurnal cycles for fourteen days in March, 2006 were evaluated during which time the synoptic scale circulation had three principal patterns: from the east (E), southwest (SW) and west northwest (WNW). The original hypothesis was that air arriving from the direction of Mexico City would have much higher concentrations of anthropogenic gases and particles than air from Puebla or Cuernavaca, due to the relatively large differences in populations. In fact, not only were the average, maximum concentrations of CO and O3 (0.3 and 0.1 ppmv) approximately the same for air originating from the WNW and E, but the average maximum concentrations of Peroxyacyl nitrates (PAN,PPN) and particle organic matter (POM) in air from the E exceeded those in air from the WNW. Comparisons of measurements from the mountain site with those made by aircraft during the same period, using the same type of aerosol mass spectrometer, show that the total masses of POM, NO3−, SO42− and NH4+ were approximately the same from aircraft measurements made over Mexico City and when winds were from the east at the mountain site. In contrast 75% of the total aerosol mass at the mountain site was POM whereas over Mexico City the fraction of POM was less than 60%. The measurements suggest the occasional influence of emissions from the nearby volcano, Popocatepetl, as well as possible incursions of biomass combustion; however, the large concentrations of O3, PAN and POM suggest that secondary processes are the major source for these gases and particles. The similar concentrations in gases and particles when air is coming from the E and NWN raises the possibility of recirculation of air from Mexico City and the importance of this mechanism for impacting the regional air quality

    Physical and chemical properties of the regional mixed layer of Mexico's Megapolis Part II: Evaluation of measured and modeled trace gases and particle size distributions

    Get PDF
    This study extends the work of Baumgardner et al. (2009) in which measurements of trace gases and particles, at a remote, high altitude mountain site, 60 km from Mexico City were analyzed with respect to the origin of the air masses. In the current evaluation, the temperature, water vapor mixing ratio (WMR), ozone (O<sub>3</sub>), carbon monoxide (CO), sulfur dioxide (SO<sub>2</sub>) and acyl peroxy nitrate (APN) are simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. Comparisons between the model and measurements are also evaluated for particle size distributions (PSDs) of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM). The model predictions of the diurnal trends in temperature, WMR and trace gases were generally well correlated; 13 of the 18 correlations were significant at a confidence level of <0.01. Less satisfactory were the average hourly differences between model and measurements that showed predicted values within expected, natural variation for only 10 of the 18 comparisons. The model performed best when comparing with the measurements during periods when the air originated from the east. In that case all six of the parameters being compared had average differences between the model and measurements less than the expected standard deviation. For the cases when the air masses are from the southwest or west northwest, only two of the comparisons from each case showed differences less than the expected standard deviation. The differences appear to be a result of an overly rapid growth of the boundary layer predicted by the model and too much dilution. There also is more O<sub>3</sub> being produced, most likely by photochemical production, downwind of the emission sources than is predicted by the model. <br></br> The measured and modeled PSD compare very well with respect to their general shape and the diameter of the peak concentrations. The spectra are log normally distributed with most of the mass in the accumulation mode centered at 200 ± 20 nm and little observed or predicted changes with respect to the time when the RML is above the Altzomoni research station. Only the total mass changes with time and air mass origin. The invariability of average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation after six hours of aging downwind of the major sources of anthropogenic emissions in Mexico's Megapolis. This could greatly simplify parameterization in climate models although it is not known at this time if this invariance can be extended to other megacity regions

    Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday-weekend effect

    Get PDF
    During the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May-June 2010, measurements of volatile organic compounds (VOCs) were performed in the Los Angeles (LA) basin onboard a NOAA research aircraft and at a ground site located in Pasadena. A weekday-weekend effect in ozone, caused by lower NOx emissions due to reduced diesel truck traffic in the weekends, has been previously observed in Los Angeles and other cities. Measurements in the Caldecott tunnel show that emission ratios of VOCs do not vary with the day of the week, but measurements during CalNex2010 show a VOC weekday-weekend effect through faster photochemical processing at lower ambient NOx mixing ratios. Ambient VOC enhancement ratios of long-lived species such as benzene are the same between weekdays and weekends, whereas enhancement ratios of short-lived species, such as trimethyl benzene, are up to a factor of three lower on weekends. Based upon the observed differences in VOC enhancement ratios to CO, we determine that photochemical processing was on average 65%-75% faster on weekends during CalNex2010, which indicates that ambient OH radical concentrations were larger by this factor causing the observed change in VOC composition. A box model calculation based on the Master Chemical Mechanism was used to verify the increase in photochemical processing in the weekends. Key PointsSpatial and temporal photochemical processing in Los AngelesVOC weekday-weekend effectFaster photochemistry in weekends ©2013. American Geophysical Union. All Rights Reserved

    Diurnal tracking of anthropogenic CO<sub>2</sub> emissions in the Los Angeles basin megacity during spring 2010

    No full text
    Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May–15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model – Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity

    Measurements of hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets

    Get PDF
    International audienceMeasurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends
    corecore