125 research outputs found

    The population biology of the living coelacanth studied over 21 years

    Get PDF
    Between 1986 and 2009 nine submersible and remote-operated vehicle expeditions were carried out to study the population biology of the coelacanth Latimeria chalumnae in the Comoro Islands, located in the western Indian Ocean. Latimeria live in large overlapping home ranges that can be occupied for as long as 21 years. Most individuals are confined to relatively small home ranges, resting in the same caves during the day. One hundred and forty five coelacanths are individually known, and we estimate the total population size of Grande Comore as approximately 300–400 adult individuals. The local population inhabiting a census area along an 8-km section of coastline remained stable for at least 18 years. Using LASER-assisted observations, we recorded length frequencies between 100 and 200 cm total length and did not encounter smaller-bodied individuals (\100 cm total length). It appears that coelacanth recruitment in the observation areas occur mainly by immigrating adults. We estimate that the mean numbers of deaths and newcomers are 3–4 individuals per year, suggesting that longevity may exceed 100 years. The domestic fishery represents a threat to the long-term survival of coelacanths in the study area. Recent changes in the local fishery include a decrease in the abundance of the un-motorized canoes associated with exploitation of coelacanths and an increase in motorized canoes. Exploitation rates have fallen in recent years, and by 2000, had fallen to lowest ever reported. Finally, future fishery developments are discussed

    CSI-OMIM - Clinical Synopsis Search in OMIM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The OMIM database is a tool used daily by geneticists. Syndrome pages include a Clinical Synopsis section containing a list of known phenotypes comprising a clinical syndrome. The phenotypes are in free text and different phrases are often used to describe the same phenotype, the differences originating in spelling variations or typing errors, varying sentence structures and terminological variants.</p> <p>These variations hinder searching for syndromes or using the large amount of phenotypic information for research purposes. In addition, negation forms also create false positives when searching the textual description of phenotypes and induce noise in text mining applications.</p> <p>Description</p> <p>Our method allows efficient and complete search of OMIM phenotypes as well as improved data-mining of the OMIM phenome. Applying natural language processing, each phrase is tagged with additional semantic information using UMLS and MESH. Using a grammar based method, annotated phrases are clustered into groups denoting similar phenotypes. These groups of synonymous expressions enable precise search, as query terms can be matched with the many variations that appear in OMIM, while avoiding over-matching expressions that include the query term in a negative context. On the basis of these clusters, we computed pair-wise similarity among syndromes in OMIM. Using this new similarity measure, we identified 79,770 new connections between syndromes, an average of 16 new connections per syndrome. Our project is Web-based and available at <url>http://fohs.bgu.ac.il/s2g/csiomim</url></p> <p>Conclusions</p> <p>The resulting enhanced search functionality provides clinicians with an efficient tool for diagnosis. This search application is also used for finding similar syndromes for the candidate gene prioritization tool S2G.</p> <p>The enhanced OMIM database we produced can be further used for bioinformatics purposes such as linking phenotypes and genes based on syndrome similarities and the known genes in Morbidmap.</p

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Disparities in Healthcare Utilisation Rates for Aboriginal and Non-Aboriginal Albertan Residents, 1997-2006: A Population Database Study

    Get PDF
    Background: It is widely recognised that significant discrepancies exist between the health of indigenous and nonindigenous populations. Whilst the reasons are incompletely defined, one potential cause is that indigenous communities do not access healthcare to the same extent. We investigated healthcare utilisation rates in the Canadian Aboriginal population to elucidate the contribution of this fundamental social determinant for health to such disparities. Methods: Healthcare utilisation data over a nine-year period were analysed for a cohort of nearly two million individuals to determine the rates at which Aboriginal and non-Aboriginal populations utilised two specialties (Cardiology and Ophthalmology) in Alberta, Canada. Unadjusted and adjusted healthcare utilisation rates obtained by mixed linear and Poisson regressions, respectively, were compared amongst three population groups - federally registered Aboriginals, individuals receiving welfare, and other Albertans. Results: Healthcare utilisation rates for Aboriginals were substantially lower than those of non-Aboriginals and welfare recipients at each time point and subspecialty studied [e.g. During 2005/06, unadjusted Cardiology utilisation rates were 0.28% (Aboriginal, n = 97,080), 0.93% (non-Aboriginal, n = 1,720,041) and 1.37% (Welfare, n = 52,514), p = ,0.001]. The age distribution of the Aboriginal population was markedly different [2.7%$65 years of age, non-Aboriginal 10.7%], and comparable utilisation rates were obtained after adjustment for fiscal year and estimated life expectancy [Cardiology: Incidence Rate Ratio 0.66, Ophthalmology: IRR 0.85]. Discussion: The analysis revealed that Aboriginal people utilised subspecialty healthcare at a consistently lower rate than either comparatively economically disadvantaged groups or the general population. Notably, the differences were relatively invariant between the major provincial centres and over a nine year period. Addressing the causes of these discrepancies is essential for reducing marked health disparities, and so improving the health of Aboriginal people

    Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays

    Get PDF
    Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0–300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick’s law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1–8 µm2 s-1 to 1–20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7–3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans

    West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing

    Get PDF
    Recent ice loss from the West Antarctic Ice Sheet has been caused by ocean melting of ice shelves in the Amundsen Sea. Eastward wind anomalies at the shelf break enhance the import of warm Circumpolar Deep Water onto the Amundsen Sea continental shelf, which creates transient melting anomalies with an approximately decadal period. No anthropogenic influence on this process has been established. Here, we combine observations and climate model simulations to suggest that increased greenhouse gas forcing caused shelf-break winds to transition from mean easterlies in the 1920s to the near-zero mean zonal winds of the present day. Strong internal climate variability, primarily linked to the tropical Pacific, is superimposed on this forced trend. We infer that the Amundsen Sea experienced decadal ocean ariability throughout the twentieth century, with warm anomalies gradually becoming more prevalent, offering a credible explanation for the ongoing ice loss. Existing climate model projections show that strong future greenhouse gas forcing creates persistent mean westerly shelf-break winds by 2100, suggesting a further enhancement of warm ocean anomalies. These wind changes are weaker under a scenario in which greenhouse gas concentrations are stabilized

    Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Get PDF
    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well
    • …
    corecore